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Identification and Analysis of Deleterious Human SNPs
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We have developed two methods of identifying which non-synonomous
single base changes have a deleterious effect on protein function in vivo.
One method, described elsewhere, analyzes the effect of the resulting
amino acid change on protein stability, utilizing structural information. The
other method, introduced here, makes use of the conservation and type of
residues observed at a base change position within a protein family.
A machine learning technique, the support vector machine, is trained on
single amino acid changes that cause monogenic disease, with a control set
of amino acid changes fixed between species.

Both methods are used to identify deleterious single nucleotide
polymorphisms (SNPs) in the human population. After carefully
controlling for errors, we find that approximately one quarter of known
non-synonymous SNPs are deleterious by these criteria, providing a set of
possible contributors to human complex disease traits.
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Introduction

Knowledge of the human genome sequence,1,2

together with a large number of single nucleotide
polymorphisms (SNPs) present in the human
population3–6 opens the way for the development
of a detailed understanding of the mechanisms by
which genetic variation results in phenotype
variation. In particular, it should now be possible
to identify the contribution of SNPs to human
disease. It is estimated that the human population
has approximately one SNP with a frequency of
more than 1% every 290 base-pairs, implying a total
of about ten million.7 Missense SNPs, resulting in
an amino acid change in a protein, are most
accessible to analysis. There are an average of
about four coding region SNPs per gene, half of
which are non-synonymous or missense SNPs,8,9

implying a total of about 50,000.
Genetic mapping, especially linkage analysis,10

has successfully mapped more than 1000 human
inheritable diseases to genes. Most of those are rare
monogenic (one gene/one trait) diseases, following
a simple Mendelian inheritance pattern. On the
lsevier Ltd. All rights reserve
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other hand, common human diseases, such as
hypertension, diabetes, Alzheimer, stroke, and
heart disease, which follow a more complicated
inheritance pattern, are proving much harder to
analyze.11–13 Difficulties are caused by incomplete
penetrance (a person carrying a predisposing allele
may not exhibit the disease phenotype); genetic
heterogeneity (mutations on one of several genes
may result in identical phenotypes); and polygenic
inheritance (a trait is controlled by multiple gene
interactions, such that each individual predisposing
allele has a low risk factor and shows weak
correlation with the disease trait). In addition,
environmental factors may also play an important
role in shaping disease phenotypes. Genetic
mapping does not provide direct insight into the
relationship between the presence of a SNP and
susceptibility to a particular disease. There are a
variety of mechanisms that may be involved,
including effects of transcription rate, protein
folding, protein function and protein half-life.

Here, we analyze non-synonymous or missense
SNPs, that is, those which change an amino
acid, and so may affect protein folding, function,
or half-life. More than half of monogenic disease
causes are these single amino acid substitutions.10

We use two methods to identify which missense
non-synonymous SNPs (nsSNPs) are deleterious to
protein function. Both methods have been
developed and tested on amino acid changes
causative of monogenic disease, and a control set
d.
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of single residue changes fixed between closely
related mammalian species.14 One method analyzes
the impact of amino acid changes on protein
stability, making use of the three-dimensional
structural environment.15 We find the majority of
single base changes that cause monogenic disease
significantly destabilize the folded state of the
protein concerned. The second method, reported
here, makes use of the tendency of critical amino
acids to be conserved with a protein family. The
more conserved and restricted the type of amino
acid at a position, the more likely that a substitution
not consistent with that pattern will have a
deleterious impact on protein function. This
method is more general than the stability model,
including all types of protein level effect. It is also
more widely applicable, since it does not require
knowledge of three-dimensional structure. On the
other hand, it provides less direct insight into the
mechanism by which a missense SNP affects
protein function. The principles of sequence con-
servation methods have also been explored by
others.14,16–21 We have used a machine learning
method, the support vector machine, trained on five
simple features that capture the relative sequence
conservation at each position in a multiple sequence
alignment. The support vector machine allows the
identification of a subset of high confidence
predictions. Both methods are carefully bench-
marked. The use of two separate methods provides
an additional means of assessing the reliability of
the conclusions.

The two methods have been used to analyze sets
of non-synonymous SNPs found in the human
population, extracted from the dbSNP database,4

and a subset of those for which population
frequency data are available. The subset are data
from Perlegen5 and the Hapmap consortium.6

Using stringent criteria, we find that about one
quarter of these SNPs are classified as deleterious at
the same level as those causing monogeneic disease
in other genes. These are very likely to have a
significant impact on protein function, and so
probably contribute to complex disease traits, and
provide a basis for prioritization in association
studies.
Table 1. Training and testing data for the profile and stability

Deleterious mutants

Number (%) Protei

All data 10,263 100 731
Profile 9468 92 693
Profile HC 7986 78 673
Stability 3768 37 243
Stability HC 3046 30 229
ProfileCstab-
ility

3641 35 235

ProfileCstab-
ility HC

2501 24 216

Deleterious mutants are amino acid changes that cause monogenic di
human proteins and closely related orthologs. HC are high confidenc
number of proteins from which data are included.
We have also examined a number of aspects of the
relationship between monogenic disease genes and
the rest. First, we have compared the occurrence of
deleteriousSNPsinmonogenicversusnon-monogenic
disease genes. We find that, whereas in monogenic
disease genes nearly all deleterious SNPs occur at low
frequency in the population, in other genes a larger
proportion are found at high frequencies, consistent
withtheideathattheeffectofdeleteriousSNPsinother
genesisbuffered. Second, wehavelookedattherateof
sequencedivergenceof monogenic versusothergenes.
An interesting variation with conservation level is
found. Third, we have found that there is a correlation
between the phenotypic impact of mouse knockouts
and whether or not the orthologous human gene is
implicated in monogenic disease. Finally, we have
checked to see if monogenic disease genes are less
likely to have paralogs than the others, exploring the
idea that paralogs sometimes can provide substitute
function. No such effect was found.
Results
Training and testing data used for
the classification methods

Table 1 summarizes the monogenic disease and
control datasets used for training and benchmark-
ing the sequence profile and structure stability
methods. There were a total of 10,263 deleterious
mutants in 731 proteins and 16,682 control
substitutions in 348 proteins available. The profile
model includes 92% and 71% of these respectively,
since profiles can be built for most proteins. In
testing, high confidence (HC, SVM score Oj0.5j)
classifications were obtained for over 80% of these.
Significantly fewer data (37% and 14%, respect-
ively) are included in the stability model, because
of low structural coverage of human proteins. High
confidence classifications are again obtained for
about 80% of cases. The last two rows show the
data for cases where both methods could be
applied. The fraction of high confidence predic-
tions is similar.
methods

Control substitutions

ns Number (%) Proteins

16,682 100 348
11,778 71 336
10,171 61 336
2309 14 153
1904 11 152
2141 13 148

1498 9 146

sease.10 Control substitutions are amino acid differences between
e classifications from the support vector machine. Proteins are the



Figure 2. ROC curve showing the relationship between
specificity (fraction of control set data correctly classified)
and sensitivity (fraction of disease set data correctly
classified), for the stability model (dotted line), the profile
model (broken) and a combined method (continuous
line). The profile method performs noticeably better than
the stability model, and the combined method is slightly
superior to the profile model alone.
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Accuracy of the classification methods

Figure 1 shows the false positive (blue bars) and
false negative rate (red bars) for both methods
separately, on all data and for just the high
confidence classifications (a support vector machine
(SVM) score of greater than 0.5 for non-deleterious
classifications and less than K0.5 for deleterious
ones), as well as the corresponding data for the
cases where the two methods agree. Bootstrapping,
with 30 SVMs for each method, was used to obtain
the accuracies and confidence limits. As expected,
the false positive and false negative rates are
highest for the individual classification methods,
lower when only high confidence classifications are
considered, and lowest of all when only high
confidence classifications shared by both methods
are included (3% false positive, 9% false negative).
The false negative rate of the profile method is
slightly lower than that of the stability method (20%
versus 26% for all classifications, 16% versus 21% for
high confidence ones, where the latter include 85%
and 80% of the data, respectively). This difference is
expected, since the profile method includes all
effects on protein function at the amino acid level,
including ligand binding, catalysis, allosteric mech-
anisms, and post-translational modifications, as
well as stability and folding effects, whereas the
stability model includes only stability and folding
contributions. Less expected is the lower false
positive rate for the profile method (9% versus 17%
overall, 6% versus 12% for high confidence classifi-
cations). The balance between false positive and
false negative rates is determined by the relative
weights given to the deleterious and control
datasets in training the SVM. Equal weights, taking
into account the differences in data set sizes, were
Figure 1. Evaluation of the profile and stability
methods. False positive and false negative rates are
shown for the two methods alone, and for cases where
both can be applied and the classifications agree. Results
are shown for all classifications, and for the high
confidence subsets (HC, SVM score Oj0.5j). Higher false
negative rates for the stability model reflect the fact that
only stability and folding effects are included, whereas
the profile model includes all effects on protein function
in vivo. Bars indicate 95% confidence limits, obtained from
30 bootstrapped runs.
used. A 9/10 weighting of control to disease sets
produces approximately equal false positive and
false negative rates of about 17%.

Figure 2 shows a ROC (receiver operating
characteristic) curve analysis of the relationship
between specificity (fraction of control data
correctly classified) and sensitivity (fraction of
disease data correctly classified). Specificity and
sensitivity were calculated for a series of SVM score
thresholds, using the subset of data where both
methods can be applied. Values for the combined
method were obtained using the sum of the SVM
scores for the two independent methods. This
analysis shows that the profile model has better
performance at most thresholds, and that the
combined method provides a slight advantage
over the profile method alone.
Causes of error

For both methods, the finite error rates reflect
both the effects of approximations in the methods
and the nature of the data sets. The stability method
incorporates a number of approximations in
modeling the structure of mutants, and uses a
scenario based analysis of effects on stability.15 As
discussed later, for the profile method, the effect of a
limited number of sequences in a profile is the main
approximation. The Human Gene Mutation
Database (HGMD) data10 used as a disease set
contains some entries that are not strictly causative
of monogenic disease. For example, the mutant
G15D in the a-chain of hemoglobin (HBA1) is in
HGMD, but is predicted to be non-disease causing,
with a confident SVM score of 2.9. The literature on
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this mutation22 gives no indication of disease. Since
1999, HGMD have added some mutants that are
disease associated or risk polymorphisms. This
work uses the HGMD version of 26 April 2002,
which includes 152 mutants annotated as not
necessarily causative of disease. The false negative
rate for these is very high: 62% for the profile
method and 73% for the stability method. The
assumption of no deleterious effects fixed between
species might contribute to a finite false positive
rate. A limited check on that possibility is provided
by 41 HGMD mutants where the altered amino acid
is the wild-type in another species. Of the 37
classified by the profile model only four are found
to be deleterious. Thus, these appear to be mostly
non-disease entries in HGMD, rather than deleter-
ious mutants fixed in other species. Overall, the
data in HGMD are of high quality, and appropriate
for this application. Errors in the models and the
data are sufficiently small that firm conclusions
about the level of deleterious SNPs in the human
population can be reached, as described below.
Sensitivity to the number of sequences
in a profile

The reliability of the PSSM and entropy values
used in the profile method depends on the size of
the sequence alignment. We examined the accuracy
of the method as a function of the number of
sequences available, after filtering out redundant
and less reliably aligned sequences, as described in
Materials and Methods. Profiles were divided into
sets with different numbers of sequences, and the
accuracy evaluated for each set. Table 2 shows the
results. All sets have similar accuracy, except the set
with the smallest number of sequences (2–9). This
group has a similar false negative rate but a higher
false positive rate (31%) than the other groups. The
high false positive rate is probably a consequence of
the low maximum entropy for a small number of
sequences: the maximum for two sequences is
approximately 1 bit, while for 20 sequences, it
is 4.3 bits. Additionally, for small profiles, the PSSM
is dominated by the BLOSUM scores rather than the
pattern of residue use.
Table 2. Accuracy of the profile method as a function of the

Deleterious

No. of
sequences FN Proteins Numb

[2–9] 0.18 60 500
[10–19] 0.17 82 1073
[20–39] 0.18 167 1957
[40–59] 0.22 121 1871
[60–79] 0.19 94 804
[OZ80] 0.18 169 3263

Accuracy is measured in terms of the false negative rate (FN) and the
variants analyzed in each alignment size range, and Proteins are the
equal in all but the smallest alignment range, where there is a sharp
Comparison between BLOSUM, PSSM,
and profile models

The full profile method includes the PSSM for the
aligned sequences, and entropy factors. We
compared the performance of a PSSM23 alone,
which takes into account which residues are
observed at each position in a sequence alignment,
with performance using an average substitution
matrix (BLOSUM24), which considers only the
likelihood of the substitution in all proteins at all
positions. It has been suggested that the BLOSUM
matrix is suitable for use in identifying damaging
nsSNPs.9,25 Since a PSSM contains information
unique to each sequence family and sequence
position, we would expect it to produce more
accurate classifications.

BLOSUM 45 and BLOSUM 62, representing
average substitution preferences between proteins
with different levels of sequence identity, were
tested. PSSM and BLOSUM method accuracy as a
function of a score threshold were examined, and
the threshold returning the lowest sum of false
positives and false negatives chosen in each case.
The results are shown in Table 3, with the full
profile method included for comparison. The
BLOSUM matrices both yield similar false positive
and negative rates, of about 27% and 36%,
respectively, whereas the PSSM has significantly
lower values of 22% and 28%. The profile model is
substantially more accurate than the PSSM alone,
with false positive and false negative rates of 9%
and 20%, respectively, establishing that the entropy
terms do provide significant additional infor-
mation.

Analysis of population SNPs: approximately
a quarter of non-synonymous population
SNPs are deleterious

We now use the profile and stability methods to
identify deleterious non-synonymous SNPs in the
human population. As described in Materials and
Methods, nsSNP data were obtained from three
sources: the NCBI dbSNP database,4 the Perlegen
data,5 and the Hapmap project results.6 dbSNP
contains a wide range of data, some of which are
number of sequences in the alignment

Control

er FP Proteins Number

0.31 16 787
0.14 24 1296
0.11 85 2785
0.13 66 2263
0.10 48 1578
0.10 97 3069

false positive rate (FP). The Number columns show the number of
number of human proteins included. Accuracy is approximately
rise in the false positive rate.



Table 3. Comparison of classification accuracy of
BLOSUM matrices, a PSSM and the full profile method

False positive rate
(%)

False negative rate
(%)

BSOSUM 45 27 38
BLOSUM 62 28 36
PSSM 22 28
Profile model 9 20

The PSSM method has substantially lower false positive and false
negative rates than obtained with either BLOSUM matrix. The
additional entropy information in the full profile model further
improves accuracy.
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based on a single observation. Both Perlegen and
the Hapmap project have genotyped sets of
individuals from several different populations.
Since these SNPs are all verified, and have
associated population frequency information, we
have analyzed them as a separate data set, referred
to as the Frequency set. Table 4 shows the number of
data available in the full dbSNP set and the
Frequency set, and the number of data that can be
classified by the stability and profile methods, the
combined methods, and the number of high
confidence classifications in each case.

Figure 3 shows the fraction of population SNPs
assigned as deleterious in dbSNP (blue bars) and
the Perlegen/Hapmap data (purple bars). Results
are again shown for the two methods separately,
and for the combined methods, for all classifi-
cations, and those of high confidence. Deleterious
classifications in both SNP sets are lowest for the
most stringent conditions (high confidence classifi-
cations for the combined methods), with 33% for all
dbSNP data and 17% for the Frequency subset. The
highest deleterious rates are for the stability model
alone, with 40% for the dbSNP data, and 31% for the
Frequency subset. Deleterious SNP rates are con-
sistently substantially lower for the Frequency
subset than the full dbSNP set, presumably
reflecting the effect of the unreliable single obser-
vation component in dbSNP. As a control, we also
analyzed the 952 Hapmap SNPs which were found
to have zero frequency, that is, are in dbSNP, but
were not observed in the Hapmap population. The
Table 4. Data used for identifying deleterious human SNPs

All

Number SNPs SNPs (%)

dbSNP build 124 50772 100
Profile 29,081 57
Profile HC 22,067 43
Stability 5166 10
Stability HC 3960 8
ProfileCstability 3150 6
ProfileCstability HC 2096 4

The top line shows the number of missense SNPs available in the dbS
information, from Perlegen and the Hapman project. Classifications
SNPs classified in each case, and the number of genes are given for the
In each case, values are given the full data and for the subset that ar
profile method classifies 50% of those SNPs as
deleterious, a much higher value, and close to that
obtained in tests introducing random mutations.

The deleterious population SNP rates in Figure 3
are distorted somewhat by the finite false positive
and false negative rates of the classification
methods. Distortions can occur in both directions:
a high false positive rate contributes to over-
estimating the deleterious SNP level, but a high
false negative rate contributes to an underestimate.
We correct for these effects as follows: For a given
true deleterious rate Dtrue, with a false positive rate
fp and false negative rate fn, the expected apparent
deleterious rate Dexp is:

Dexp Z DtrueKDtrue � fn C ½1KDtrue� � fp

where the second term (Dtrue* fn) is the
underestimate effect of false negatives, the third
([1KDtrue]*fp) is the over-estimate effect of false
positives. The most probable value of Dtrue is thus:

Dtrue Z ðDexp KfpÞ=ð1Kfp KfnÞ

A set of apparent deleterious rates (Dexp) were
obtained using each of the 30 SVM profile and 30
stability model SVMs, and Dtrue values estimated
for each, using the corresponding fp and fn values.
Average values of Dtrue were then calculated,
together with 95% confidence limits.

Figure 4 shows the estimated true deleterious
rates for each of the method conditions, using the
frequency subset. The stability model and the
profile model on all data both return values of
approximately 25%. Slightly lower values were
obtained with the high confidence subsets, and
the lowest value (15%) was obtained with the high
confidence assignments common to both methods.
It is expected that high confidence scores are only
obtained for the more severe effects on protein
function and stability. Application of the stability
method to site-directed mutagenesis data where
experimental folding free energies are available
confirms that on average high confidence assign-
ments have a more severe effect on protein stability
(data not shown). Thus, the lower level of
deleterious SNPs found for the high confidence
Frequency set

Number
genes Number SNPs SNPs (%)

Number
genes

15,710 10,403 100 6316
11,129 6377 61 4297
9782 4911 47 3549
2019 885 9 624
1776 681 7 509
1512 531 5 415
1180 370 4 304

NP database, and the subset of these with population frequency
were made on the full set and the frequency set. The number of
profile method, the stability method and the combined methods.

e classified with high confidence (SVM score Oj0.5j).



Figure 3. Estimated fraction of deleterious SNPs in the
human population. Results are shown for all missense
SNPs in dbSNP build 124 (blue bars), and a subset for
which there are population frequency data (purple bars).
Deleterious rates are calculated using the profile and
stability methods, the two methods combined, and also,
in each case, for high confidence (HC, SVM score Oj0.5j)
classifications only. Consistently lower rates are found for
the frequency subset than for all dbSNP data, partly
reflecting the effect of incorrect entries in the latter.
Variations in the rate for the different classification
methods reflect the differing false positive and false
negative levels. Lower rates for the high confidence
predictions reflect the fact that these are generally
obtained only for more severe effects on protein structure
and function.
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score subsets are an estimate of the fraction of more
severely deleterious SNPs in the population. The
best estimate of the fraction of population missense
SNPs that are as detrimental to protein function as
those found for monogenic disease is provided by
the full set of classifications for the profile and
Figure 4. Estimated fraction of deleterious SNPs in the
human population, corrected for the effects of false
negatives and false positives. The Stability, Profile and
combined methods all yield rates close to 25%. The high
confidence classifications yield lower values, reflecting
the fact that generally only severe effects on protein
structure and function have high confidence classifi-
cations. Data are for the Frequency subset of dbSNP. The
bars show 95% confidence limits.
stability methods. For both, that value is close to
25%. Thus, the analysis leads to the conclusion that
approximately one quarter of non-synonymous
SNPs found in the population are as deleterious to
protein function as single base changes known to
cause monogenic disease. This value is a little lower
than reports by other groups,17,18 probably because
of the effect of correcting for finite error rates in the
methods.
Deleterious SNPs in monogenic disease genes

There are 4458 nsSNPs in dbSNP located in
monogenic disease genes, among which 1656 are
assigned as deleterious by the profile method. Only
a small portion (152) is also present in HGMD as
known monogenic disease mutants. The remainder
might be new monogenic disease causing variants,
known variants not yet entered into the HGMD, or
false positives. Given a false positive rate of 10%, we
only expect 446 in that category. If the additional
SNPs really are disease causing, we would expect
them to be predominantly at low frequencies in the
population. Figure 5 shows a comparison of
the population frequency distribution of the
970 of these in the frequency subset with the
corresponding distribution for all other genes. As
expected, there are many more low frequency SNPs
in both sets. Both sets also show a higher fraction of
deleterious SNPs at low frequency, compared to
non-deleterious, consistent with their being selected
against. That bias is stronger for the monogenic
disease gene set, and only about 10% are at
frequencies higher than 20%, the expected fraction
of false positives. More precisely, there are 170
disease gene deleterious SNPs with a frequency of
less than 5%, versus 723 such SNPs in non-disease
genes, and 78 higher frequency deleterious SNPs in
Figure 5. Distribution of SNP frequencies in the human
population. Filled red bars show the fraction of all
deleterious missense SNPs in each frequency range, for
all non-monogenic disease genes. The hashed red bars
show the same data for monogenic disease genes; green
bars show the corresponding data for non-deleterious
SNPs. As expected low frequency SNPs are the most
common for all categories. Deleterious SNPs are biased
towards low frequencies in both sets, but the effect is
considerably stronger for monogenic disease genes.
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monogenic disease genes versus 827 in the others.
A c2 test on these values shows that the probability
of the excess low frequency deleterious SNPs in
monogenic disease genes occurring by chance is
2.3!10K10. Thus, there is more selection against
deleterious SNPs in the monogenic disease genes.
Many of the low frequency disease gene deleterious
SNPs are likely involved in monogenic disease. As
noted above, some may have already been known,
but have not been entered into the HGMD. Others
are likely previously unrecognized contributors to
monogenic disease.

To investigate the possibility that some of the
additional deleterious missense SNPs in monogenic
disease genes are in fact disease causing, we
examined the subset of 18, in 15 different genes,
which are assigned as deleterious with high
confidence by both classification methods. Table 5
summarizes the data for these SNPs. Five are
already in the HGMD, but given the very low
false positive rate for this subset (3%), the others are
candidate mutants for monogenic disease. Two of
these have surprisingly high population frequen-
cies for monogenic disease mutants: SERPINA7
L303F, at 20%; and AMACR G175D with a
frequency of 34%. SERPINA7 belongs to a family
of serine protease inhibitors, but also functions as a
thyroid binding–globulin (TBG). There are many
mutations associated with TBG deficiency, and
many of these also have a high population
frequency.26,27 These mutants alone are not suffi-
cient to cause disease, since the resulting tendency
for hyperthyroid is usually reversed by reduced
thyroid hormone secretion. The high frequency is
thus likely a consequence of a second factor being
required for disease. There is no obvious expla-
nation for the high frequency of the AMACR SNP.
Table 5. Very high confidence classifications of deleterious po

Gene SNP_ID
SVM

stability
SVM

Profile Substitution

CFTR 766874 K0.88 K1.75 S605F
FCER1A 2298805 K0.73 K2.67 S101N
NTRK1 6336 K1.06 K1.17 H604Y
DNASE1 1799891 K0.54 K0.77 P154A
CFTR 1800100 K1.06 K2.12 R668C
LYZ 1800973 K0.92 K0.72 T88N
CHAT 8178990 K0.82 K1.26 L125F
EPX 2302311 K1.32 K0.81 M572Y
HFE 1800562 K1.00 K1.77 C194Y
TAP1 1057149 K0.80 K1.94 R708Q
CYP2A6 17791931 K0.81 K1.99 L160H
KLK3 17632542 K0.58 K1.67 I179T
PTGS2 5272 K1.40 K1.42 E488G
HFE 1799945 K0.70 K0.66 H63D
CYP2A6 5031017 K1.57 K1.61 G479V
OTOR 6135876 K0.91 K0.96 L31P
SER-
PINA7

1804495 K1.28 K1.38 L303F

AMACR 10941112 K1.51 K2.35 G175D

SVM stability and SVM profile are the scores assigned by the two cla
column gives the mean frequency of each SNP over the populations. T
been genotyped: afr, African; eur, European; chn, Chinese, jap, Japanes
of disease causing mutations (IDs in the last column).
Divergence rates of monogenic disease-associ-
ated proteins

Figure 6 shows a comparison of divergence rates
of monogenic disease proteins versus all others.
A larger proportion of the most highly conserved
proteins are non-disease, whereas at moderate to
high conservation, a higher proportion is disease.
At the lower conservation levels, non-disease
proteins are slightly more common: There are 278
disease genes and 3374 others with sequence
identities less than or equal to 75%, and 1258
disease genes and 12,337 others with identities
higher than 75%. A c2 test yields a probability of
0.0022 of this bias occurring by chance. This pattern
can be rationalized as follows. Damage to the most
conserved proteins is more likely to be lethal, and
thus, not identified as disease causing. The lowest
conserved proteins are likely buffered against
deleterious changes in some way, and so are also
not involved in monogenic disease. It is the more
moderately to highly conserved genes where
deleterious SNPs are likely to lead to disease, but
not to be lethal. Other reports,28,29 using only
average values, and separately analyzed Ks and Ka

rates, come to contradictory conclusions. With more
genomes becoming available, further study will be
worthwhile.

Comparison with mouse knockout data

The profile and stability models detect SNPs that
reduce the level of protein function in vivo. The limit
of reduced function is the absence of the gene. Thus,
we would expect a relationship between the
response of the human phenotype to deleterious
SNPs, and the response of mice to knockout of the
pulation SNPs in monogenic disease genes

Freq. Source Population HGMD

0.002 Hapmap afr,eur,chn,jap
0.007 Perlegen afr,eur,chn
0.011 Hapmap afr,eur,chn,jap CM990977
0.011 Hapmap afr,chn,jap
0.014 Perlegen afr,eur,chn CM950247
0.015 Hapmap afr,eur,chn,jap
0.021 Hapmap afr,eur,chn,jap
0.027 Hapmap afr,eur,chn,jap
0.028 Perlegen afr,eur,chn CM960828
0.029 Perlegen afr,eur,chn
0.035 Perlegen afr,eur,chn CM980517
0.036 Perlegen afr,eur,chn
0.056 Hapmap afr,eur,chn,jap
0.085 Hapmap afr,eur,chn,jap CM960827
0.125 Hapmap afr
0.141 Perlegen afr,eur,chn
0.203 Perlegen afr,eur,chn

0.341 Hapmap afr,eur,chn,jap

ssification methods. A score !K0.5 is high confidence. The Freq.
he Population column lists the populations in which each SNP has
e populations. Only five of these SNPs are in the HGMD database



Figure 6. Protein sequence divergence rates for human
monogenic disease proteins (blue bars) and all others
(purple bars). Rates are expressed in terms of the
sequence identity between each human protein and its
mouse ortholog. Disease proteins have a larger pro-
portion of high sequence identity mouse orthologs
showing that, on average, their sequences diverge more
slowly than those of other proteins.

Table 6. Relationship between mouse knockout pheno-
types and human monogenic disease genes

Phenotype
Total
genes

Disease
genes

Fraction
genes(%)

Compatible
with viability

No apparent
effect

13 1 8

With effect 147 71 48
Postnatal or
perinatal
mortality

51 22 43

Prenatal
mortality

. 29 8 28

Total genes are the number of mouse knockouts in each
phenotype category, and Disease genes are the number for
which the human ortholog is a monogenic disease gene.
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corresponding orthologs.†. In this database, genes
are clustered into four knockout phenotype groups.
The first group is of genes where the knockout is
compatible with viability. This group is further
subdivided into cases where there is a detectable
effect on the phenotype, and cases where the
phenotype is apparently unaffected. The other
three groups are of genes where knockout causes
post-, peri- and prenatal mortality.

Table 6 shows the fraction of monogenic
disease genes in each of the mouse knockout
groups. The lowest fraction of monogenic genes
is for the no-effect group of knockouts (8%),
consistent with fully buffered genes generally not
contributed to monogenic disease. The next
lowest fraction is for the prenatal mortality set
(28%), consistent with defects in these human
genes probably resulting in a non-viable fetus,
and so not classified as disease associated.
Approximately half of the other knockout groups
have equivalent monogenic disease genes, con-
sistent with non-lethal but significant impact on
the phenotype often being classified as mono-
genic disease. In all, there are nine disease genes
in the two categories not consistent with mono-
genic disease (no effect and prenatal lethal), and
33 non-disease genes. For the categories consist-
ent with monogenic disease (affected phenotype
and post-natal lethal) the corresponding numbers
are 93 disease genes and 105 others. A c2 test
yields a low probability of the correlation
occurring by chance (0.004), but the correlation
is not as high as might be expected. There are
several possible reasons for that. As more mouse
knockout data becomes available, a fuller analysis
will be possible.
† Mouse knockout data were obtained from http://
www.bioscience.org/knockout/knochome.htm
Frequency of paralogs for monogenic disease
and other genes

A possible distinguishing feature between mono-
genic disease genes and the rest is that the
phenotype is robust to reduced function on the
latter because of redundancy of function, other
genes can at least partly compensate for reduced
activity. Full identification of possible substitute
genes requires a detailed knowledge of human
protein networks, not yet available. However, it
might be expected that paralogs would often
perform this role, and a number of such cases are
known. For example, E-selectin and P-selectin are
paralogous, with 40% protein sequence identity.
Single gene knock-out mice show mild phenotypes,
while the double knock-out mice have a severe
disease phenotype, consistent with overlapping
function.30 On the other hand, there are many
cases where paralogous genes are involved in
different biological processes, for example malate
and lactate dehydrogenases.

Paralogs were identified by searching each
human protein sequence against all others, select-
ing relatives with a BLAST E-score of 10K3 or better.
Table 7 shows the fraction of monogenic and other
genes with at least one paralog. There is no
difference between the two types of gene; in both
cases about 87% have paralogs. We conclude from
this that buffering mechanisms are more varied
than just the use of paralogs.
Discussion

The main conclusion of this study is that about
one quarter of the known missense SNPs in the
human population are significantly deleterious to
protein function in vivo. Others have reported a
figure of about one third.17,18 It has also been
suggested that the fraction is much lower,16 with
false positives, errors in dbSNP, and known
monogenic disease mutations inflating the apparent
value. We have taken into account the effect of false
positives and false negatives to obtain a corrected
value for deleterious rate. We have also examined

http://www.bioscience.org/knockout/knochome.htm
http://www.bioscience.org/knockout/knochome.htm


Table 7. Fraction of monogenic and other genes that have
paralogs

Monogenic disease
genes Other genes

Count (%) Count (%)

No paralogs 227 13 705 13
Paralogs 1460 87 4887 87

Monogenic disease data are from HGMD.10 Other genes are other
human genes containing at least one SNP classified as
deleterious. There is no difference in the fraction with paralogs
for the two sets, suggesting that other mechanisms are dominant
in shielding the phenotype from the adverse effects of deleterious
SNPs in the non-monogenic disease genes.

† http://www.snps3d.org
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the difference in apparent deleterious rate for all of
dbSNP and a validated subset. There is indeed a
higher value of about one third for all dbSNP, but
the value of a quarter is obtained on reliable data.
Some of the deleterious SNPs are in known
monogenic disease genes, but about 80% of the
dbSNP ones, and 70% of the validated set, are not.

Some of the new deleterious SNPs in monogenic
disease genes are candidates for previously un-
recognized disease causes. The deleterious SNPs in
non-monogenic disease genes are candidates for
contributing to complex disease traits. Presumably,
the network environment of the proteins concerned
buffers the effect on the phenotype. This view is
supported by the analysis of the relationship
between monogenic disease genes and mouse
knockout phenotypes; knockouts with intermediate
impact on the phenotype are more likely to be
orthologs of human monogenic disease genes.
A simple form of buffering is overlapping function
with paralogous proteins. For example, a T cell
mediated immune response will involve
many different T-cell receptors. We have found
deleterious SNPs in some of these proteins,31

but redundancy through paralogs will provide
buffering. Surprisingly, we did not find that
monogenic disease genes are less likely to have
paralogs than others, so this mechanism is probably
only one of a number. A proper understanding of
these buffering processes will require a detailed
knowledge of the relationship between protein
function and network behavior.

Many of the deleterious SNPs in non-monogenic
disease genes are relatively rare. In one sense, this is
expected, since overall, there are many more rare
SNPs than common ones. The low frequency
deleterious SNPs may contribute to relatively rare
complex traits, or they may contribute in many
combinations to produce common traits.32,33

For complex diseases, variation in a single gene
only marginally increases risk, and as a conse-
quence, most association studies present weak and
sometimes inconsistent results.34 The deleterious
SNPs found in this and other analyses provide
additional information that can be used to select
SNPs for inclusion in association studies, or, in
larger scale studies, to provide prior probabilities
that can be incorporated into the statistical model.
The analysis of human SNPs was done using a
previously developed method, based on protein
structure/stability factors,15 and a new, sequence
profile based method. The sequence method has a
larger coverage of missense SNPs because it does
not require knowledge of three-dimensional struc-
ture. Also, since sequence methods are based on
evolutionary selection information extracted from
multiple sequence alignments, they are not limited
by current knowledge of protein function and
structure, and so include a wider range of effects.
On the other hand, the sequence method assumes
that deleterious SNPs will eventually be removed
during evolution. While this assumption may be
true for those genes associated with monogenic
disease or serving as major contributors to complex
diseases, it may not be as true for those with only
subtle effects on the phenotype. For this reason, it is
desirable to develop broadly based mechanistic
models of SNP impact†.
Materials and Methods
Construction of the deleterious variant dataset

The deleterious variants are a set of single amino acid
substitutions known to cause monogenic disease. Genes
associated with monogenic disease were identified by
checking all 16,220 human gene names in the NCBI
Locuslink35 database (as of 26 April 2002) against the
Human Gene Mutation Database10 (HGMD) (as of 9
February 2002). HGMD contains the most comprehensive
collection of mutations related to monogenic disease.
Most cause monogenic disease, although a few may be
associated with disease as a result of linkage disequili-
brium rather than directly causative, or contribute to a
complex trait disease. Later versions of HGMD include
more of the latter class, and so the earlier version was
preferred. A total of 731 genes containing 10,263 single
residue variations were identified.
Identification of a set of non-deleterious single
residue variants

We also required a control set of mutants, not
causative of disease. It is not known which base
variants in the human population contribute to complex
trait disease, and so it is not possible to use these.
Following others,14 we used non-synonymous base
differences between human proteins and closely related
proteins in other mammals. The justification here is that
almost all variants that are fixed between species are
essentially neutral and non-deleterious. To maintain
compatibility between the deleterious and control sets,
the same 731 monogenic disease proteins were used.
The protein sequences of these genes were compared to
all other mammalian protein sequences in Swiss-Prot,36

using BLAST.23 Proteins with at least 90% sequence
identity over at least 80% of the full length were
selected. Single residue differences in these alignments
were used as a set of pseudo mutations. A total of 348

http://www.snps3d.org
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proteins containing 16,682 such single-residue differ-
ences to the human disease set were obtained.

Source of human population missense SNPS

SNPs were obtained from NCBI dbSNP, build 124.
Many of the dbSNP entries are not verified (are based
on single observations, or population frequency data
have not been deposited). A confirmed SNP set was
built from data in Perlegen (as of May 2005) and the
Haplotype genotyping projects (Phase I, as of May
2005). Files containing SNP and frequency information
were downloaded from Perlegen and Hapmap project
websites‡. These two datasets were processed as
follows. (1) Both datasets were mapped to dbSNP
RefSNP clusters. Hapmap provides a link from each
record to a RefSNP ID; the Perlegen submission SNP ID
and the mapping table, SNPSubSNPLink, between
submission SNP IDs and RefSNP IDs in dbSNP build
124 were used to link each Perlegen record to the
related RefSNP cluster. (2) For each RefSNP entry, mean
frequencies were calculated from the three Perlegen
populations, and from the available Hapmap popu-
lations. (3) In cases where data are available for both
sources, the Hapmap information was discarded. dbSNP
links were used to map each SNP to the corresponding
amino acid substitution.

Construction of sequence profiles

Each human protein sequence was searched against
the NR (Non-redundant Protein Database) using
PSIBLAST23 with an E-score cutoff of 10K3 and three
search rounds. The PSIBLAST sequence alignment
(profile) and the position specific scoring matrix
(PSSM) were retained for further use. Profiles were
filtered as follows.

(1) Closely related proteins were removed: if a pair of
proteins had more than 90% sequence identity in
PSIBLAST, one was eliminated from the profile.

(2) Less reliably aligned proteins were removed: any
protein with less than 30% sequence identity to the
query human sequence was removed.

(3) Regions of the alignment where more than 50% of
the sequences have a gap were removed.
Features for the support vector machine

The following five features were used for the SVM.

(1) The probability of substituting the variant residue
type a at position j in the sequence alignment, P(a,j),
taken from the corresponding matrix element in the
PSSM.

(2) The entropy at each position j in the alignment,
calculated using the Shannon37 entropy formula:

Sj ZKSPilog2Pi

where the sum is over the 20 possible amino acids,
and Pi is the probability of a particular residue type i
at this position. Probabilities are calculated from the
filtered alignment profile.
‡ http://genome.perlegen.com and
http://www.hapmap.org/
(3) The mean entropy hSi over the sequence, calculated by
averaging over all sequence positions.

(4) The standard deviation of the entropy over all
positions, calculated as:

sðSÞ Z ½ð
X

i

ðSi KhSiÞ2Þ=ðNK1Þ�1=2

where the sum is over all sequence positions, Si is the
entropy at a particular position, and N is number of
sequence positions.

(5) The entropy at each position j, expressed as a Z score:

Zj Z ðSj KhSiÞ=sðSÞ

Support vector machine (SVM)

The five parameters described above: probability of
accepting that amino acid substitution, entropy, mean
entropy, standard deviation of the entropy and the entropy
Z score, were used as features to train a SVM. The
deleterious variant set consisted of these values for all the
monogenic disease causing residue positions, and the
control set were the values for the inter-species amino
acid differences. SVMlight§, an implementation of SVM in C,
was used, with a linear kernel. Weights were assigned to the
disease and control data sets to compensate for their
different sizes, such that they contributed equally to
determining the partitioning surface. The distance of a
data point from the partitioning surface provides an
approximate measure of confidence in a classification.
Bootstrapped datasets were used for training and accuracy
assessment. That is, each SVM was trained on data points
drawn randomly from the disease and control sets, with the
total number of points equal to the size of each set. The
training and testing procedure was repeated 30 times. For
each trial, the false negative rate (the fraction of deleterious
variations mis-classified as non-deleterious) and false
positive rate (the fraction of non-deleterious variations
mis-classified as deleterious) in the test dataset (those points
not included in training) were calculated. The average false
positive and false negative rates provide the measure of the
classification accuracy. The 95% confidence intervals were
also obtained from the distribution offalse positive and false
negative values. A similar procedure was used to obtain
confidence intervals for the fraction of deleterious SNPs in
the population data sets.
Stability model

Full details are available in an earlier paper.15 A
summary is provided here. Eleven contributions to the
energy and entropy of protein stability are considered.
There are four classes of electrostatic interaction:
reduction of charge-charge, charge-polar or polar-polar
energy, or introduction of electrostatic repulsion; three
solvation effects: burying of charge or polar groups, and
reduction in non-polar area buried on folding; and two
terms representing steric strain: backbone strain and
overpacking. The other two contributions considered are
cavity formation (affecting van der Waals energy), and
loss of a disulfide bridge. Surface accessibility of the
mutated residue relative to the unfolded state is also
included, as well as three parameters related to the Ca

temperature factor of the mutated residues, so that in all
there are 15 parameters. The same SVM software as for
the profile model was used to determine the partition-
§ http://svmlight.joachims.org

http://genome.perlegen.com
http://www.hapmap.org/
http://svmlight.joachims.org
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ing surface between the disease and non-disease data in
the 15-dimensional parameter space. Continuous vari-
ables were normalized in the form of a Z score (ZZ
(value-mean)/standard-deviation). A radial basis kernel
with a g value of 0.2 was used.

Estimate of protein divergence rate from human
and mouse orthologous genes

Mouse orthologs were taken from the NCBI Homo-
loGene database.38 For each orthologous pair, the
BLAST sequence identity was calculated between all
refseq mouse protein sequences and those of all the
corresponding human refseq entries, and the highest
value was used. (This procedure is necessary, since
each gene may have multiple protein isoforms.)

Matching of mouse knockouts with human genes

The OMIM ID of each available mouse knockout gene
was extracted and matched to the NCBI locuslink
database, to identify the corresponding human gene
name. Human curation was used to match remaining
mouse genes and verify each link. The matched human
genes were compared to those in the HGMD database, to
find the subset involved in monogenic disease.
Acknowledgements

This work was supported by grant LM07174 from
the National Library of Medicine. We thank Eugene
Melamud for help with the database infrastructure,
and many useful discussions.
References

1. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W.,
Mural, R. J., Sutton, G. G. et al. (2001). The sequence of
the human genome. Science, 291, 1304–1351.

2. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C.,
Zody, M. C., Baldwin, J. et al. (2001). Initial sequencing
and analysis of the human genome. Nature, 409,
860–921.

3. Sachidanandam, R., Weissman, D., Schmidt, S. C.,
Kakol, J. M., Stein, L. D., Marth, G. et al. (2001). A map
of human genome sequence variation containing 1.42
million single nucleotide polymorphisms. Nature, 409,
928–933.

4. Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan,
L., Smigielski, E. M. & Sirotkin, K. (2001). dbSNP: the
NCBI database of genetic variation. Nucl. Acids Res. 29,
308–311.

5. Hinds, D. A., Stuve, L. L., Nilsen, G. B., Halperin, E.,
Eskin, E., Ballinger, D. G. et al. (2005). Whole-genome
patterns of common DNA variation in three human
populations. Science, 307, 1072–1079.

6. The International Hapmap Consortium. (2003). The
International HapMap Project. Nature, 426, 789–796.

7. Kruglyak, L. & Nickerson, D. A. (2001). Variation is
the spice of life. Nature Genet. 27, 234–236.

8. Halushka, M. K., Fan, J. B., Bentley, K., Hsie, L., Shen, N.,
Weder, A. et al. (1999). Patterns of single-nucleotide
polymorphisms in candidate genes for blood-pressure
homeostasis. Nature Genet. 22, 239–247.
9. Cargill, M., Altshuler, D., Ireland, J., Sklar, P., Ardlie, K.,
Patil, N. et al. (1999). Characterization of single-
nucleotide polymorphisms in coding regions of
human genes. Nature Genet. 22, 231–238.

10. Stenson, P. D., Ball, E. V., Mort, M., Phillips, A. D.,
Shiel, J. A., Thomas, N. S. et al. (2003). Human Gene
Mutation Database (HGMD): 2003 update. Hum.
Mutat. 21, 577–581.

11. Carlson, C. S., Eberle, M. A., Kruglyak, L. &
Nickerson, D. A. (2004). Mapping complex disease
loci in whole-genome association studies. Nature, 429,
446–452.

12. Botstein, D. & Risch, N. (2003). Discovering genotypes
underlying human phenotypes: past successes for
Mendelian disease, future approaches for complex
disease. Nature Genet. 33, 228–237.

13. Emahazion, T., Feuk, L., Jobs, M., Sawyer, S. L.,
Fredman, D., St Clair, D. et al. (2001). SNP association
studies in Alzheimer’s disease highlight problems for
complex disease analysis. Trends Genet. 17, 407–413.

14. Sunyaev, S., Ramensky, V., Koch, I., Lathe, W., 3rd,
Kondrashov, A. S. & Bork, P. (2001). Prediction of
deleterious human alleles. Hum. Mol. Genet. 10,
591–597.

15. Yue, P., Li, Z. & Moult, J. (2005). Loss of protein
structure stability as a major causative factor in
monogenic disease. J. Mol. Biol. 353, 459–473.

16. Ng, P. C. & Henikoff, S. (2003). SIFT: Predicting amino
acid changes that affect protein function. Nucl. Acids
Res. 31, 3812–3814.

17. Ramensky, V., Bork, P. & Sunyaev, S. (2002). Human
non-synonymous SNPs: server and survey. Nucl.
Acids Res. 30, 3894–3900.

18. Chasman, D. & Adams, R. M. (2001). Predicting the
functional consequences of non-synonymous single
nucleotide polymorphisms: structure-based assess-
ment of amino acid variation. J. Mol. Biol. 307,
683–706.

19. Krishnan, V. G. & Westhead, D. R. (2003). A
comparative study of machine-learning methods to
predict the effects of single nucleotide polymorph-
isms on protein function. Bioinformatics, 19,
2199–2209.

20. Thomas, P. D., Kejariwal, A., Campbell, M. J., Mi, H.,
Diemer, K., Guo, N. et al. (2003). PANTHER: a
browsable database of gene products organized by
biological function, using curated protein family and
subfamily classification. Nucl. Acids Res. 31, 334–341.

21. Verzilli, C. J., Whittaker, J. C. & Stallard, N. D. C.
(2005). A hierarchical Bayesian model for predicting
the functional consequences of amino acid poly-
morphisms. J. Roy. Statist. Soc. C, 54, 191–207.

22. Molchanova, T. P., Pobedimskaya, D. D. & Postnikov,
Yu. V. (1994). A simplified procedure for sequencing
amplified DNA containing the alpha 2- or alpha
1-globin gene. Hemoglobin, 18, 251–255.

23. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J.,
Zhang, Z., Miller, W. & Lipman, D. J. (1997). Gapped
BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucl. Acids Res. 25,
3389–3402.

24. Henikoff, S. & Henikoff, J. G. (1993). Performance
evaluation of amino acid substitution matrices.
Proteins: Struct. Funct. Genet. 17, 49–61.

25. Ferrer-Costa, C., Orozco, M. & de la Cruz, X. (2002).
Characterization of disease-associated single amino
acid polymorphisms in terms of sequence and structure
properties. J. Mol. Biol. 315, 771–786.



1274 Analysis of Deleterious Human SNPs
26. Mori, Y., Takeda, K., Charbonneau, M. & Refetoff, S.
(1990). Replacement of Leu227 by Pro in thyroxine-
binding globulin (TBG) is associated with complete
TBG deficiency in three of eight families with this
inherited defect. J. Clin. Endocrinol. Metab. 70,
804–809.

27. Waltz, M. R., Pullman, T. N., Takeda, K., Sobieszczyk, P.
& Refetoff, S. (1990). Molecular basis for the properties
of the thyroxine-binding globulin-slow variant in
American blacks. J. Endocrinol. Invest. 13, 343–349.

28. Huang, H., Winter, E. E., Wang, H., Weinstock, K. G.,
Xing, H., Goodstadt, L. et al. (2004). Evolutionary
conservation and selection of human disease gene
orthologs in the rat and mouse genomes. Genome Biol.
5, R47.

29. Smith, N. G. & Eyre-Walker, A. (2003). Human
disease genes: patterns and predictions. Gene, 318,
169–175.

30. Frenette, P. S., Mayadas, T. N., Rayburn, H., Hynes,
R. O. & Wagner, D. D. (1996). Susceptibility to
infection and altered hematopoiesis in mice deficient
in both P- and E-selectins. Cell, 84, 563–574.

31. Wang, Z. & Moult, J. (2003). Three-dimensional
structural location and molecular functional effects
of missense SNPs in the T cell receptor Vbeta domain.
Proteins: Struct. Funct. Genet. 53, 748–757.
32. Smith, D. J. & Lusis, A. J. (2002). The allelic
structure of common disease. Hum. Mol. Genet. 11,
2455–2461.

33. Pritchard, J. K. & Cox, N. J. (2002). The allelic
architecture of human disease genes: common
disease-common variant/or not? Hum. Mol. Genet.
11, 2417–2423.

34. Prince, J. A., Feuk, L., Sawyer, S. L., Gottfries, J.,
Ricksten, A., Nagga, K. et al. (2001). Lack of replication
of association findings in complex disease: an analysis
of 15 polymorphisms in prior candidate genes for
sporadic Alzheimer’s disease. Eur. J. Hum. Genet. 9,
437–444.

35. Wheeler, D. L., Church, D. M., Edgar, R., Federhen, S.,
Helmberg, W., Madden, T. L. et al. (2004). Database
resources of the National Center for Biotechnology
Information: update. Nucl. Acids Res. 32, D35–D40.

36. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter,
M. C., Estreicher, A., Gasteiger, E. et al. (2003). The
SWISS-PROT protein knowledgebase and its sup-
plement TrEMBL in 2003. Nucl. Acids Res. 31, 365–370.

37. Shannon, C. E. (1948). A mathematical theory of
communication. Bell Syst. Tech. J. 27, 379–423.

38. Wheeler, D. L., Barrett, T., Benson, D. A., Bryant, S. H.,
Canese, K., Church, D. M. et al. (2005). Database
resources of the National Center for Biotechnology
Information. Nucl. Acids Res. 33, D39–D45.
Edited by J. Karn
(Received 6 July 2005; received in revised form 4 December 2005; accepted 8 December 2005)
Available online 27 December 2005


	Identification and Analysis of Deleterious Human SNPs
	Introduction
	Results
	Training and testing data used for the classification methods
	Accuracy of the classification methods
	Causes of error
	Sensitivity to the number of sequences in a profile
	Comparison between BLOSUM, PSSM, and profile models
	Analysis of population SNPs: approximately a quarter of non-synonymous population SNPs are deleterious
	Deleterious SNPs in monogenic disease genes
	Divergence rates of monogenic disease-associated proteins
	Comparison with mouse knockout data
	Frequency of paralogs for monogenic disease and other genes

	Discussion
	Materials and Methods
	Construction of the deleterious variant dataset
	Identification of a set of non-deleterious single residue variants
	Source of human population missense SNPS
	Construction of sequence profiles
	Features for the support vector machine
	Support vector machine (SVM)
	Stability model
	Estimate of protein divergence rate from human and mouse orthologous genes
	Matching of mouse knockouts with human genes

	Acknowledgements
	References


