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Methods

Identification of rare cancer driver mutations
by network reconstruction
Ali Torkamani and Nicholas J. Schork1

The Scripps Translational Science Institute and Scripps Genomic Medicine, Scripps Health and The Scripps Research Institute,

La Jolla, California 92037, USA

Recent large-scale tumor resequencing studies have identified a number of mutations that might be involved in tumor-
igenesis. Analysis of the frequency of specific mutations across different tumors has been able to identify some, but not all
of the mutated genes that contribute to tumor initiation and progression. One reason for this is that other functionally
important genes are likely to be mutated more rarely and only in specific contexts. Thus, for example, mutation in one
member of a collection of functionally related genes may result in the same net effect, and/or mutations in certain genes
may be observed less frequently if they play functional roles in later stages of tumor development, such as metastasis. We
modified and applied a network reconstruction and coexpression module identification-based approach to identify
functionally related gene modules targeted by somatic mutations in cancer. This method was applied to available breast
cancer, colorectal cancer, and glioblastoma sequence data, and identified Wnt/TGF-beta cross-talk, Wnt/VEGF signaling,
and MAPK/focal adhesion kinase pathways as targets of rare driver mutations in breast, colorectal cancer, and glio-
blastoma, respectively. These mutations do not appear to alter genes that play a central role in these pathways, but rather
contribute to a more refined shaping or ‘‘tuning’ of the functioning of these pathways in such a way as to result in the
inhibition of their tumor-suppressive signaling arms, and thereby conserve or enhance tumor-promoting processes.

[Supplemental material is available online at http://www.genome.org.]

A number of recent tumor resequencing studies have been pursued

to identify mutations that are likely to cause tumor formation

(Wood et al. 2007; Cancer Genome Atlas Research Network 2008;

Ding et al. 2008; Jones et al. 2008b; Parsons et al. 2008). Mutations

that are likely to contribute to or cause tumorigenesis are termed

‘‘driver’’ mutations, and those likely nonfunctional or neutral

mutations that simply build up during the unchecked cell turnover

and proliferation that is the hallmark of tumor formation are

termed ‘‘passenger’’ mutations (Torkamani et al. 2008). Identifying

driver mutations and distinguishing them from mere passenger

mutations is not trivial. Many, if not most studies seeking to

identify driver mutations exploit strategies that consider the fre-

quency of mutations as the sole criterion for differentiating driver

mutations from passenger mutations—the intuition being that

mutations in genes observed more often across a set of tumors

are more likely to have resulted from a cancer cell selection pro-

cess and, hence, represent mutations essential for tumorigenesis

(Torkamani et al. 2008). However, resequencing studies suggest

that rare mutations are likely to make up the vast majority of

mutations contributing to tumorigenesis. Identifying such muta-

tions poses a number of challenges and is the focus of this work.

As an example of an attempt to identify driver mutations

using a frequency-based strategy, a recent resequencing study of 11

breast and 11 colorectal tumor samples identified mutations in

1138 genes among the breast cancer samples and 849 genes among

the colorectal cancer samples (Wood et al. 2007). The genes that

exhibited frequent mutations were then resequenced in an addi-

tional set of tumors to identify candidate cancer genes, termed

‘‘CAN-genes’’ by the investigators. However, given estimates of the

number of genes involved in tumorigenesis based upon positive

selection for nonsynonymous mutations, a number of mutated

genes may have carried functional mutations and contributed to

tumorigenesis, but were indistinguishable from background muta-

tions based on their mutation frequency. Given the wide variety of

mutations likely to be involved in tumorigenesis, frequency-based

approaches for identification of rare cancer driver mutations are not

likely to be successful without enormous investments in sample

collection and characterization in order to achieve adequate power.

Thus, methods for identification of rare driver mutations are in need.

Previous efforts to detect rare driver mutations have focused

on known pathways or known direct interactions between mu-

tated genes, resulting in descriptions of tumorigenic processes in

very general terms, and hence, lack specificity with respect to the role

of specific mutations in the tumorigenic process (Hernández et al.

2007; Lin et al. 2007). In this study, we applied a network recon-

struction and gene coexpression module-based approach to identify

distinct coexpression modules containing a larger number of mu-

tated genes than expected by chance. This approach is a modifica-

tion and application of the general framework for weighted gene

coexpression network analysis described by Zhang and Horvath

(2005), Horvath et al. (2006), and Oldham et al. (2006). This un-

biased approach does not rely on prior knowledge of the biological

relationships between genes, but rather attempts to reconstruct sets

of coordinately acting genes in order to define, de novo, biological

processes affected by cancer mutations. We have developed and

applied this approach to genes known to be mutated in breast cancer,

colorectal cancer, and glioblastoma in order to identify groups of

genes likely to bear functionally important driver mutations.

We find that the resultant coexpression modules bearing an

excess of somatic mutations are likely to alter signaling pathways

known to be important for late tumorigenesis, such as cross-talk of

the Wnt and TGF-beta signaling pathways in breast cancer, the

Wnt and VEGF paracrine and autocrine signaling pathways in

colorectal cancer, and MAPK and focal adhesion kinase signaling

pathways in glioblastoma. These mutations generally do not affect
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the primary signaling members of the pathways (i.e., receptors

and their immediate signaling partners) and would not likely be

characterized as important mutations within these pathways using

classical pathway analysis approaches. We speculate that these

mutations ‘‘fine tune’’ distinct signaling arms of each pathway,

such that the tumor-suppressive activities of these pathways are

diminished, while tumor promoting activities enabled by these

mutations are favored (or simply left intact). Ultimately, our ‘‘sys-

tems biology’’ approach to identifying rare mutations contributing

to tumorigenesis appears to have promise.

Results

Cancer network reconstruction

To identify gene coexpression modules targeted by somatic muta-

tions in the various cancer types, we first reconstructed breast,

colorectal, and glial normal and cancerous tissue gene coex-

pression networks. We chose to use the ARACNE algorithm for this

purpose because of its proven superior performance over other

algorithms and its computational feasibility on a whole-genome

scale (Margolin et al. 2006). Although there are many algorithms

and strategies for reconstructing gene coexpression networks, in-

cluding those that exploit a simple pairwise correlation matrix of

gene-expression levels and clustering algorithms, the mutual in-

formation approach in the ARACNE algorithms has been shown

to provide superior results in related contexts (Priness et al. 2007).

Other investigators have applied the mutual information ap-

proach to related gene-clustering approaches previously (Butte

and Kohane 2000; Daub and Sonnhammer 2008). Importantly,

mutual information more accurately captures nonlinear expres-

sion relationships between genes. To demonstrate this, we com-

pared the mutual information scores vs. the absolute value of the

Pearson’s correlation coefficients derived from the breast cancer

expression datasets. Figure 1 presents the Pearson’s correlation

versus mutual information for genes in breast module 26 with all

other genes (Fig. 1A) or only with other genes from breast module

26 (Fig. 1B). The importance of breast module 26 is described later

on. In general, while Pearson’s correlation captures the relation-

ship between module genes well, a bias for genes with high mutual

information scores and lower Pearson’s correlation coefficients is

evident. These gene pairs display nonlinear gene expression rela-

tionships and are dominated by transcription factors such as

TCF7L1 (Fig. 1B, highlighted in red), which is an important mu-

tated gene in breast module 26.

Mutual information scores for gene expression levels, I, were

used to construct symmetric, undirected, weighted, adjacency

matrices, A, for which self connections were not allowed (i.e., the

diagonal of the matrix is set to 0), and the connection strength

between genes x and y is simply equivalent to the mutual in-

formation score over the expression levels of the genes, such that

the elements of the I are defined as: axy = ayx = I(x;y). The mutual

information scores were standardized so that the maximum mu-

tual information score in each network was set to one. These

mutual information scores were then used to define the weighted

adjacency matrices, A, which were transformed to approximate an

unweighted scale-free network topology of the type observed in

other well-characterized biological systems (Zhang and Horvath

2005; Khanin and Wit 2006).

Cancer coexpression modules

The transformed adjacency matrices, A, were converted to dis-

tance matrices by replacing each value in the matrix by one mi-

nus the original value (i.e., the elements of the distance matrices

were defined as: axy = ayx = 1�[I(x;y) / I(max)]s. Where I(max) is the

maximum mutual information score in the matrix (i.e., the stan-

dardization factor), and s is an integer used to transform the un-

weighted adjacency matrix to approximate the scale-free criteria

(see Supplemental Methods for details).

These distance matrices were then subjected to hierarchical

clustering with complete linkage. The distance and clustering

methods used have demonstrated superior performance in similar

contexts (Gibbons and Roth 2002). Finally, gene coexpression

modules were defined by identifying closely connected subclusters

using the Dynamic Tree Cut algorithm (Langfelder et al. 2008). To

demonstrate the robustness of this approach, we randomly re-

moved genes from the original data and analyzed the resultant

modules for the existence of the original breast module 26 (see

Supplemental Text). The approach gives the best results with

a large gene set represented in the expression datasets.

This process resulted in 64 distinct breast cancer gene co-

expression modules containing 10,379

genes (Supplemental Table 1), 137 co-

lorectal cancer gene coexpression modules

containing 11,531 genes (Supplemental

Table 2), and 81 glioblastoma cancer gene

coexpression modules containing 11,391

genes (Table 1; Supplemental Table 3).

Most breast cancer modules overlapped

significantly with a colorectal cancer or

glioblastoma module, approximately half

of the colorectal cancer modules over-

lapped significantly with a breast cancer

module, approximately a third of co-

lorectal cancer modules overlapped sig-

nificantly with a glioblastoma module,

about three-fourths of glioblastoma mod-

ules overlapped significantly with a breast

cancer module, and a little less than half

the glioblastoma modules overlapped sig-

nificantly with a colorectal cancer module

(as determined by the hypergeometric

Figure 1. Mutual information vs. Pearson correlation. (A) Scatterplot of mutual information scores vs.
Pearson’s correlation coefficients for genes in breast module 26 vs. all other genes. The two scores are
strongly correlated R2 = 0.53. The central line is the linear fit with 95% confidence bands. (B) Scatterplot of
mutual information scores vs. Pearson’s correlation coefficients for genes in breast module 26 with only
other genes in breast module 26. Scores involving TCF7L1 are highlighted in red. Linear fit and 95% band
of A is overlaid to demonstrate bias for high mutual information scores vs. Pearson’s correlation coefficients.
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distribution, threshold for significance corrected for multiple tests »
5.0 3 10�6; see Supplemental Methods for determination of sig-

nificance thresholds) (Table 1). The relationships between the

modules can be observed in Figure 2. Breast, colorectal cancer, and

glioblastoma modules were subjected to two-way clustering based

upon their probability of overlap as determined by the hyper-

geometric distribution, and are visualized as the negative log of the

probability of overlap (Fig. 2). Distinct clusters of modules can be

observed, and most modules from one tissue at least approach

significance in overlap with a module from the opposing tissues.

However, there exist unique modules in each tissue, suggesting

an overall similarity in the gene coexpression modules in breast

cancer and colorectal cancer, with a handful of tissue-specific

modules. Overall, breast cancer and glioblastoma modules display

the greatest degree of overlap (Table 1), a probable reflection of

their common descent from the ectodermal germ layer as com-

pared with the endodermal origin of colon tissue.

Identification of mutated coexpression modules

To identify coexpression modules containing a significant number

of genes mutated in breast or colorectal cancer, we mapped the

breast cancer, colon cancer, and glioblastoma mutated genes from

the ‘‘Discovery Screens’’ by Wood et al. (2007) and Parsons et al.

(2008) to the coexpression modules that we identified. The dis-

covery screen by Wood et al. (2007) involved an initial genome-

wide sequencing of 11 breast and 11 colorectal cancer samples,

while the discovery screen by Parsons et al. (2008) involved an

initial genome-wide sequencing of 22 glioblastoma samples (one

hypermutated sample treated with temozolomide was removed

from our analysis). The results of this sequencing effort were later

used to identify what are referred to as frequently mutated, or

‘‘CAN,’’ genes that were studied in later selective sequencing pro-

tocols in a larger set of additional tumor samples. By only focusing

on genes mutated frequently within the ‘‘Discovery Screen,’’ the

investigators thus discarded potentially important cancer genes

that are either mutated less frequently overall or simply happened

to show a less-frequent mutation rate in the small sample at their

disposal due to sampling error.

In our analyses, each mutated gene was counted only once

within a module, despite the number of mutations identified in it.

Thus, modules containing a single frequently mutated gene (for

example, TP53) would not be considered further because of the

presence of a single highly mutated gene. Our goal was to identify

networks containing multiple, though rarely mutated genes im-

portant to tumorigenesis, rather than networks containing, e.g.,

a single gene that happened to be mutated frequently. We hy-

pothesize that genes that mutated frequently play a stronger role

in initiating tumorigenesis and are observed in all cancer cells of an

individual tumor, whereas rarer mutations that cluster in gene

modules are likely to be associated with processes involved in tu-

mor progression, maintenance, and me-

tastasis, and may be restricted to local

populations of cancer cells within an in-

dividual tumor, though they are not

necessarily excluded from involvement

in tumor initiation. If these rarer muta-

tions are involved in more ‘‘downstream’’

tumor progression events, they may also

be more relevant to differential outcomes

observed in cancer patients.

The distinction between what we are

seeking to identify and what others have investigated is an im-

portant one and forms the main theme of our research, whereas

previous analyses have been based primarily on the characteriza-

tion of highly mutated, so called ‘‘CAN genes,’’ (Chittenden et al.

2008), or focus on known pathways or direct interactions in order

to identify very general tumorigenic processes (Hernández et al.

2007; Lin et al. 2007). On the other hand, we have focused on the

reconstruction of cancer coexpression modules in order to identify

specific rare driver mutations based upon their co-occurrence in

these coexpression modules.

Mapping mutations to coexpression modules

Genes mutated in breast cancer, colorectal cancer, and glioblas-

toma were mapped to the reconstructed coexpression modules,

and the significance of the number of mutated genes mapping to

each module was evaluated by the hypergeometric distribution

(Fig. 3). There was no significant trend for mutation enrichment

within modules containing mutated genes with longer coding

regions (see Supplemental Text). When breast cancer mutated

genes were mapped to breast cancer modules (Fig. 3A, triangles),

breast module 26 and 27 contained a significant number of mu-

tated genes after correction for multiple testing (Fig. 3A, red tri-

angles; also see Table 2) (P-values = 4.39 3 10�5 and 2.32 3 10�5,

respectively). The threshold for significance is denoted by the

dashed line in Figure 2A (threshold for significance corrected for

multiple tests = 1.98 3 10�4). Breast cancer modules 26 and 27 do

not significantly overlap with any colon cancer or glioblastoma

module; thus, no colon cancer or glioblastoma modules were sig-

nificantly enriched with mutations identified from the breast

cancer samples (Fig. 3C,D, triangles). Breast cancer module 27

clusters with breast cancer module 26 (Fig. 2A,B), strongly sug-

gesting that these modules are functionally related and contain

genuine rare tumorigenic mutations. Furthermore, by indepen-

dently mapping the breast CAN genes (i.e., the frequently mutated

genes discussed in Wood et al. [2007] and Parsons et al. [2008]) to

breast modules 26 and 27, we observe that a greater number of

breast CAN genes than expected by chance reside in breast module

26 (Table 2, P-value = 2.32 3 10�5, threshold for significance cor-

rected for multiple tests = 0.006). Finally, mapping of colon CAN

mutations to breast cancer modules reveals that breast module

26 is marginally enriched with colon CAN mutations Table 2,

P-value = 0.005) and ranks fifth in enrichment of colon mutations

after highly enriched breast modules 16, 33, and 32 (discussed

below) (Fig. 3B, green circle; Table 2, P-value = 0.029). The proba-

bility that by random chance breast module 26 would be ranked

numbers 1, 2, 5, and 2 in modules enriched with breast mutations,

breast CAN, colon mutations, and colon CAN, respectively, is

7.0 3 10�6 by the rank product test (Breitling et al. 2004).

Breast modules 16 and 33 overlap significantly with colon

module 6 and are discussed in that context below. Breast module

Table 1. Summary of module characteristics

Tissue
No. of genes
in modules

No. of
modules

Median
module size

Breast
overlap

Colon
overlap

Glioblastoma
overlap

Breast 10,379 64 124 50 (78%) 50 (78%)
Colorectal 11,531 137 58 67 (49%) 45 (33%)
Glioblastoma 11,391 81 105 56 (69%) 36 (44%)

Entries display the number of genes mapping to modules, the total number of modules per tissue, the
median module size per tissue, and the number and percentage of overlapping modules per tissue pair.
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32 is not significantly enriched with breast cancer mutations or

breast CAN mutations; however, it is the most enriched module

when glioblastoma mutations are mapped to breast modules (Fig.

3B, green diamond; Table 2, P-value = 0.0003) and ranks fourth

when both colon mutations and colon CAN mutations are mapped

to breast modules (Fig. 3B, green circle; Table 2, P-value = 0.029

[colon mutations], 0.02 [colon CAN]). The probability that by ran-

dom chance breast module 32 would be ranked numbers 1, 4, and 4

in modules enriched with glioblastoma mutations, colon mutations

and colon CAN, respectively, is 0.0008 by the rank product test.

When colon cancer mutated genes were mapped to colon

modules (Fig. 3A, circles), colon modules 6 and 4 contained a sig-

nificant number of mutated genes (Fig. 3A, red circles; Table 2,

P-values = 8.1 3 10�6 and 1.8 3 10�4, respectively). No additional

evidence was available to support the association of colon module

4 with tumorigenesis. However, additional evidence strongly val-

idates colon module 6’s association with tumorigenesis. First,

mapping of colon CAN genes to colon cancer coexpression mod-

ules indicated a marginally significant enrichment of colon CAN

genes in colon module 6 (Table 2, P-value = 0.018). Colon module

6 was also the second most enriched module when mapping

glioblastoma mutations to colon modules (Fig. 3C, green diamond;

Table 2, P-value = 0.0015). Furthermore, colon module 6 signifi-

cantly overlaps with breast cancer modules 16 and 33. When co-

lorectal cancer mutants were mapped to breast cancer modules

(Fig. 3B, circles), breast cancer module 16 is highly significant (Fig.

3B, yellow circle, P-value = 5.03 3 10�6) and breast cancer module

33 is the next most enriched and marginally significant module

(Fig. 3B, green circle, P-value 0.0039), as may be expected by their

overlaps with colon module 6 (Fig. 1A). However, of the colorectal

cancer mutated genes mapping to breast module 16, 48% (11 of 23

mutated genes) do not belong to colon cancer module 6, and of the

colorectal cancer mutated genes mapping to breast cancer module

33, 64% (seven of 11 mutated genes) do not belong to colon

module 6. Thus, the overlap of breast cancer modules 16 and 33

with colon cancer module 6 does not fully account for the clus-

tering of colon cancer mutations within these modules and sug-

gests that specific biological processes shared across these modules

are disrupted by mutations during tumorigenesis.

The relationships shared by breast cancer modules 16 and 33

are further borne out by their close clustering in Figure 2, A and B.

Additionally, mapping of colon cancer CAN genes to breast cancer

modules 16 and 33 confirms a significant enrichment of colon

cancer tumorigenic mutations within these modules (P-value =

0.0068 and 0.0004, respectively). Finally, and most strikingly, breast

cancer module 33 is the next most enriched module (after the

closely related significant breast cancer modules 26 and 27) when

breast cancer mutants are mapped to breast cancer modules (Fig. 3A,

green triangle; Table 2, P-value = 0.0036), and, in addition, is mar-

ginally enriched with breast cancer CAN genes (Table 2, P-value =

0.004) and glioblastoma mutations (Fig. 3B, green diamond; Table 2,

P-value = 0.008). Thus, in two independent cancer mutation sets,

derived from different tissues, a module corresponding to colon-

cancer module 6 is enriched with cancer mutations, further sug-

gesting that the biological processes associated with colon cancer

module 6 are associated with tumorigenesis. The probability that, by

random chance, breast module 33 would be ranked numbers 3, 6, 2,

1, and 2 in modules enriched with breast mutations, breast CAN,

colon mutations, colon CAN, and glioblastoma mutations, re-

spectively, is <1.0 3 10�6 by the rank product test.

Finally, when glioblastoma mutated genes were mapped to

glioblastoma modules (Fig. 3A, diamonds), glioblastoma module 81

Figure 2. Module overlap heatmap. Breast cancer, colorectal cancer,
and glioblastoma modules were subject to two-way clustering based
upon their degree of overlap according to the hypergeometric distribu-
tion. (A) Colon modules are depicted on the vertical axis and breast
modules are depicted on the horizontal axis. (B) Breast modules are
depicted on the vertical axis and glioblastoma modules are depicted on
the horizontal axis. (C ) Glioblastoma modules are depicted on the vertical
axis and colon modules are depicted on the horizontal axis. Modules of
interest are labeled as B (breast), C (colon), or G (glioblastoma), followed
by the module number. Coloration depicts the degree of overlap, where
green indicates no overlap and red indicates the greatest degree of overlap
for each module pair. Distinct clusters of overlapping modules can be
observed. Note the close clustering of B26/B27 and B16/B33 in A and B.
Note the significant overlap of B16/B33 with C6 in A.
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contained a significant number of mutated genes (Fig. 3A, red di-

amond; Table 2, P-value = 1.89 3 10�4). Glioblastoma module 81 is

the smallest glioblastoma module and does not significantly overlap

with any breast or colon cancer module; thus, no colon cancer or

glioblastoma modules were significantly enriched with mutations

from glioblastoma samples. However, glioblastoma module 81 does

contain a marginal enrichment of colon mutations and colon CAN

mutations, ranking as modules 8 and 7, respectively. The probability

that by random chance glioblastoma module 81 would be ranked

numbers 1, 8, and 7 in modules enriched with glioblastoma mu-

tations, colon cancer mutations, and colon CAN mutations, re-

spectively, is 0.0026 by the rank product test. Note that there are

only 20 glioblastoma CAN mutations mapping to any of our mod-

ules, and thus, do not provide striking results in any analyses.

The second most enriched module when glioblastoma muta-

tions are mapped to glioblastoma modules is glioblastoma module

52 (Fig. 3A, green diamond; Table 2, P-value = 0.001). Glioblastoma

module 52 also contains a marginal enrichment of colon muta-

tions and colon CAN mutations (Fig. 3D, green circle; Table 2,

P-value = 0.005 [colon mutations], 0.03 [colon CAN]), ranking as

modules 3 and 8, respectively. The probability that by random

chance glioblastoma module 52 would be ranked numbers 2, 3,

and 8 in modules enriched with glioblastoma mutations, colon

cancer mutations and colon CAN mutations, respectively, is 0.0021

by the rank product test.

Breast modules 26, colon module 6, and glioblastoma module

81 are clearly associated with tumorigenesis through straightforward

statistical significance of the enrichment of mutations from their

respective tissues, high rankings across independent tissue mutation

datasets, and their relationships with other significant modules.

Colon module 4 and breast module 27 are also clearly significant,

though they are not supported by mutations from independent

tissue mutation datasets. The marginally significant modules, breast

modules 16, 33, 32, and glioblastoma module 52 are supported by

their relationships with the strongly significant modules as well as

their high enrichment rankings across independent tissue mutation

datasets. Although these results lend credence to the involvement of

all of these modules in tumorigenesis, we confine further discussion

Figure 3. Enrichment of cancer mutations in breast and colorectal modules: The negative log P-value, as determined by the hypergeometric distribution, of
the number of mutations mapping to each coexpression module, is plotted in order of significance. The threshold for statistical significance is denoted by the
dashed line. (A) Mutations mapped to their corresponding tissue. (B) Breast modules; (C ) colon modules; and (D) glioblastoma modules. In each panel,
triangles represent modules mapped with breast mutations, circles represent modules mapped with colon mutations, and diamonds represent modules
mapped with glioblastoma mutations. Red points are statistically significant for mutations mapped to their corresponding tissue, i.e., above the significance
threshold in A. Yellow points are statistically significant for mutations mapped to other tissues. Green points are marginally significant modules of interest.
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to the functions targeted by mutations in the strongly significant

modules: breast cancer module 26, colon cancer module 6, and

glioblastoma module 81. A list of candidate cancer drivers mutated

in each of the above modules is presented in the Supplemental Text.

Discussion

We performed gene ontology, literature, and interaction searches

in order to characterize the molecular relationships between the

mutated genes in breast cancer module

26 (Fig. 4), colon cancer module 6 (Fig. 5),

and glioblastoma module 81 (Fig. 6). A

full description of the interactions pre-

sented in Figures 4–6 is presented in the

Supplemental Text. These figures are only

meant to suggest how mutated genes

within these modules are functionally

connected based upon our best inter-

pretation of available biological infor-

mation. Importantly, coexpression modules

should not be interpreted as coherent

functional modules, though the genes

contained within coexpression modules

can be expected to contribute to similar

biological processes due to their core-

gulation. Through this analysis, we iden-

tified Wnt/TGF-beta cross-talk, Wnt/VEGF

signaling, and MAPK/focal adhesion ki-

nase pathways as targets of rare driver

mutations in breast cancer, colorectal

cancer, and glioblastoma, respectively

Breast module 26 (Fig. 4) contains

mutated genes, the majority of which are

transcriptional/translational regulators that interact with SMAD3

and beta-catenin (CTNNB1), transcriptional mediators of the TGF-

beta and Wnt signaling pathways. These signaling pathways can

result in both tumor-suppressive and proliferative effects. TGF-beta

is traditionally known for its tumor-suppressive effects, yet in later

stages of tumor development the TGF-beta promotes tumor in-

vasive processes (Massagué 2008). Beta-catenin (CTNNB1) is up-

regulated in ;60% of breast tumors, yet the activation of this

pathway does not occur through mutation of beta-catenin

Table 2. Candidate cancer modules

Module
Breast

mutations
Breast
CAN

Colon
mutations

Colon
CAN

Glioblastoma
mutations

Glioblastoma
CAN

Modules significant by mutations of the same tissue type
Breast-26 20 (4.39 3 1025) 10 (2.32 3 1025) 10 (0.029) 4 (0.005) 9 (0.05) 0 (1.00)

(1/62) (2/37) (5/60) (2/34) (11/61) (NA)
Breast-27 18 (0.00016) 4 (0.07) 4 (0.63) 0 (1.00) 1 (0.97) 0 (1.00)

(2/62) (16/37) (43/60) (N/A) (59/61) (NA)
Colon-6 10 (0.85) 1 (0.62) 26 (8.10 3 1026) 5 (0.018) 20 (0.0015) 0 (1.00)

(116/123) (54/56) (1/116) (4/56) (2/106) (NA)
Colon-4 14 (0.57) 1 (0.65) 24 (1.8 3 1024) 2 (0.38) 15 (0.08) 0 (1.0)

(92/123) (56/56) (2/116) (54/56) (20/106) (NA)
Glio-81 2 (0.25) 0 (1.00) 3 (0.038) 1 (0.022) 6 (1.89 3 1024) 0 (1.00)

(28/78) (N/A) (8/76) (7/46) (1/74) (NA)

Modules suggestive of enrichment by overall trends
Breast-16 10 (0.66) 2 (0.69) 23 (5.03 3 1026) 5 (0.0068) 13 (0.038) 0 (1.00)

(42/62) (29/37) (1/60) (3/34) (9/61) (NA)
Breast-33 14 (0.0036) 6 (0.004) 11 (0.0039) 5 (0.0004) 10 (0.008) 1 (0.02)

(3/62) (6/37) (2/60) (1/34) (2/61) (8/16)
Breast-32 8 (0.27) 0 (1.00) 9 (0.029) 3 (0.02) 13 (0.0003) 0 (1.00)

(22/62) (N/A) (4/60) (4/34) (1/61) (NA)
Glio-52 9 (0.03) 1 (0.18) 9 (0.005) 2 (0.03) 10 (0.001) 1 (0.01)

(5/78) (25/48) (3/76) (8/46) (2/74) (4/18)

Entries include the number of mutations mapping to each module, the significance of mutation enrichment in each module, and the rank of the module
out of the total number of modules containing mutations in each mutation category. Bold and underlined entries are significant, bold-only entries are
marginally significant and high ranked, italicized entries are suggestive by rank and significance. Breast cancer modules 16 and 33 are closely related by
clustering and overlap significantly with colon module 6. Breast cancer modules 26 and 27 are closely related by clustering. Threshold for significance for
mutations mapped to their corresponding tissue is 1.98 3 10�4 and to other tissues is 9.92 3 10�5. Threshold for significance for CAN mutations mapped
to their corresponding tissue is 0.006 and to other tissues is 0.003.
NA, Not available.

Figure 4. The relationship of genes mutated in breast module 26. (Red ovals) Genes mutated in breast
cancer module 26; (aqua ovals) breast module 26 genes mutated in colon cancer; (orange ovals) the
closely related breast module 27 genes; (yellow ovals) genes not present in breast cancer module 26. (Black
lines or touching ovals) Functional protein relationships; (blue lines) transcriptional relationships. Dotted
lines depict movement of SMAD3 and beta-catenin (CTNNB1) from the cytoplasm to nucleus.
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(CTNNB1) or APC, which is the case in almost 100% of colon

cancers (Lin et al. 2000). On the other hand, accumulation of beta-

catenin (CTNNB1) in the cytoplasm can lead to apoptosis, which is

mediated by BCL2L1 (also known as BCL-X) (Kim et al. 2000).

Thus, we speculate that both pathways, as well as their cooperative

effects, are manipulated by mutations in advanced tumor, so that

the tumor-suppressive functions are inhibited while the tumor

promoting activities are activated, or left intact. For example,

mutations in RBM25 would directly silence the tumor-suppressive

signaling wing of the Wnt pathway, since it is involved in splicing

of BCL2L1 (also known as BCL-X) to its apoptotic form (Zhou et al.

2008).

Colon module 6 mutations appear to target induction of an-

giogenesis and VEGF secretion by the Wnt pathway, VEGF han-

dling and secretion, as well as a VEGF autocrine hypoxia loop

(Fig. 5). These alterations, including dif-

ferences in extracellular matrix proteins,

matrix metalloproteases, and angiogenic

factors prime the tumor environment for

blood vessel formation and metastasis.

Mutations within the VEGF autocrine

signaling loop target the PKC/SRC and

RAS-mediated arms of KDR (also known

as VEGFR2), signaling shutting down the

tumor-suppressive MEF2C response to

VEGF, which may favor the MAPK/ERK

arm of the VEGF autocrine signaling loop,

which in turn activates HIF1A (hypoxia-

inducible factor 1, alpha subunit) (Calvani

et al. 2008). This autocrine loop increases

expression of additional pro-angiogenic

factors. The notion that colon module 6

mutations are involved in metastasis is

confirmed by mutational analysis of me-

tastases versus primary colorectal tumors,

where ENPP2 and PLCG2 mutations were

found only in metastases ( Jones et al.

2008a).

Glioblastoma module 81 is the

smallest glioblastoma module, which

appears to contain neuron-specific ac-

cessory genes to the focal adhesion ki-

nase/mitogen-activated kinase pathways,

which differentially mediate cellular ad-

hesion versus proliferation and migration

(Ha et al. 2008; Bigarella et al. 2009).

These processes are differentially regu-

lated by intracellular levels of effector

molecules, such as calcium and retinoic

acid, whose levels appear to be tweaked

by mutations in ion channels and RBP3,

a retinoic acid shuttle (Crowe et al. 2003;

Papi et al. 2007). These mutations appear

to favor motility and proliferation of

glioblastoma cells by targeting neuron-

specific adhesion mechanisms.

We believe a gene network recon-

struction, strategy-based approach can

successfully identify rare cancer driver

mutations through enrichment of muta-

tions within modules. The interplay of

pathways described by our approach is

unlikely to be detected by traditional pathway analysis approaches

or a focus on frequently mutated genes. Our findings suggest that

these rare mutations are involved in more peripheral elements of

important tumorigenic signaling pathways, and we speculate that

these rare mutations contribute to tumorigenesis by biasing the ul-

timate functional effects of these signaling pathways toward their

tumor-promoting versus tumor-suppressive outcomes. Identifying

cell lines containing these mutations, such as those used in the

Wood et al. (2007) study, restoring the wild-type version of these

mutated genes, and comparing the growth rates of the original

versus ‘‘restored’’ cell lines in a variety of in vivo and in vitro contexts

could be a means to verify the functional role of these mutants. Our

approach should be described in the light of a few important caveats.

The specific techniques used to reconstruct genetic networks can be

altered to generate networks of different sizes, or reflecting different

Figure 5. The relationship of genes mutated in colon cancer module 6. (Red oval) Genes mutated in
colon cancer module 6; (aqua ovals) colon module 6 genes mutated in breast cancer or glioblastoma;
(orange ovals) unmutated colon module 6 genes; (yellow ovals) genes not present in colon cancer
module 6. (Black lines or touching ovals) Functional protein relationships; (blue lines) transcriptional
relationships. Dotted lines depict movement of beta-catenin (CTNNB1) from the cytoplasm to nucleus.

Figure 6. The relationship of genes mutated in glioblastoma module 81. (Red ovals) genes mutated
in glioblastoma module 81; (aqua ovals) glioblastoma module 81 genes mutated in breast or colon
cancer; (yellow ovals) genes not present in glioblastoma module 81. (Black lines) Functional protein
relationships.
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coexpression relationships, depending upon the investigators

requirements and/or sample size and likelihood that module en-

richment will be observed in different-sized modules. Additionally,

our approach probably does not capture all of the secondary driver

mutations, which may require either additional complementary

systems biology approaches, or larger sample sizes to capture other

mutation-enriched coexpression modules. Overall, we believe this

approach shows tremendous promise for the identification of these

rare tumorigenic driver mutations, which is a crucial task for up-

coming large-scale cancer resequencing projects, as it is these more

private mutations that may be driving intra-tumor heterogeneity,

inter-patient heterogeneity, and ultimately altering response to

therapeutic intervention.

Methods
Gene expression datasets from normal and cancerous breast and
colorectal tissue were downloaded from the NCBI Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo/). Missing gene ex-
pression values were filled in as the average across the entire data set.
To maximize the number of data sets available for breast, colorectal,
and glioblastoma networks, we reconstructed networks based upon
the Affymetrix Human Genome U133A platform (20,842 probes,
13,077 genes) using numerous datasets representing multiple per-
turbed states of normal and cancerous breast (466 samples in total)
and colorectal (233 samples in total) and glial (463 samples in total)
tissue (see Supplemental Methods for datasets used).

Mutual information scores quantifying relationships between
the expression levels of genes within the normal and cancer tissue
samples were calculated using the ARACNE algorithm with a
P-value cutoff of 1 3 10�10 (Margolin et al. 2006). Adjacency ma-
trices using the mutual information scores as its elements was
converted to a distance matrix as described in the Results section
(see Supplemental Methods for further details). Distance matrices
derived from these adjacency matrices were subjected to hierar-
chical clustering with complete linkage using the R computational
suite. Resulting trees from the cluster analyses were cut into sub-
clusters using the Dynamic Tree Cut algorithm implemented in the
cutreeHybrid approach in R. Probabalistic significance levels for
overlapping clusters and the number of somatically mutated genes
mapping to each cluster was calculated using the hypergeometric
distribution in R. Gene Ontology enrichment of mutated genes
within defined clusters of genes was determined using the Gene
Ontology Tree Machine (Zhang et al. 2004). Protein–protein inter-
actions and relationships between genes were investigated using a
combination of Pathway Commons (http://www.pathwaycommons.
org/), GeneCards (http://www.genecards.org), PubMed (http://www.
pubmed.com), and Ali Baba (http://alibaba.informatik.hu-berlin.de).
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