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SUPPLEMENTARY FIGURE S1
ROC plots illustrating the Wormnet-based prediction of RNAi phenotypes. For each

known phenotype, we analyzed the ability to predict genes conferring the phenotype
using leave-one-out analysis. Every gene in the Wormnet was first rank-ordered by the
sum of its LLS scores to all other genes with the given RNAi phenotype; we then
measured the recovery of genes with the given phenotype, calculating true positive rate
(TP/(TP+FN)) and false positive rate (FP/(FP+TN)) as a function of rank. In each plot,
the diagonal represents no predictive power, curves above the diagonal indicate
prediction of the plotted phenotype, with curves farther to the top left of the plot
indicating the strongest predictive power. In order to measure rates up to 100%, we
employed pseudocounts, assigning a very low LLS score (0.00000001) to all unlinked

gene pairs in Wormnet (i.e., gene pairs lacking all evidence for functional coupling).

We tested 43 published RNAi phenotypes (see Supplementary Methods, Table C),
omitting 1 phenotype with counts too low to provide statistical significance (egg size
abnormal, 4 genes). Among the 43 tested phenotypes, we found (A) 29 strongly
predictable phenotypes, (B) 10 moderately or weakly predictable phenotypes, and (C) 4
predictable at no better than random levels. Strong prediction of phenotypic outcomes
indicates that genes sharing the same RNAi phenotype are tightly linked in Wormnet and

are considerably closer to each other in the network than to other genes.
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SUPPLEMENTARY TABLE S1
Table S1A

C. elegans DNA microarray mRNA expression data sets analyzed for co-expression,
downloaded from the Stanford Microarray Database and Stuart ez al. [11]. Six subsets of
SMD and the non-redundant Stuart et al. set showed strong correlations between mRNA
co-expression and log likelihood scores (see Supplementary Methods, Figure A-2) and

were therefore incorporated into the network.

Array group Literature sources # experiments
SMD Aging Lund J, et al. [5] 26

SMD Dauer Wang, J. and Kim, SK [12] 50

SMD L1 Wang, J. and Kim, SK [12] 44

SMD Developmental stages Jiang M, et al. [2] 26

SMD Germline Reinke V et al. [8] 34

SMD Heat shock Romagnolo B, et al. [9] 40

Stuart nonredundant Stuart et al. [11] 635

Table S1B

C. elegans DNA microarray mRNA expression data sets tested but omitted from the
network for insufficient correlation between mRNA co-expression and LLS scores (see

Supplementary Methods, Figure C).

Array group Literature sources # experiments
GEO heat-stress McCarroll SA, et al. [6] 7
SMD Alzheimer Link CD, et al. [4] 9
SMD EDC treatment Custodia N, et al. [1] 6
SMD ethanol treatment Kwon JY, et al. [3] 7
SMD hypoxia Shen C, et al. [10] 9
SMD sensory ray genes Portman DS and Emmons SW [7] 7
SMD touch receptor neuron Zhang Y, et al. [13] 6
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SUPPLEMENTARY TABLE S2

Table S2A
Benchmarking of protein physical or genetic interactions with log likelihood scores using
reference gene pairs generated from Gene Ontology biological process annotation.

Data set # unique # unique Log likelihood score
genes gene pairs
WIS literature' 131 102 1.76
WI5.scaffold 455 487 0.71
WI5.corel 723 809 0.26
WI5.core2 1114 1264 0.013
WI5.noncore 1823 1865 -0.49
Genetic interactions” 772 3663 1.15

1. WI5: Worm Interactome version 5 [7]
2. Collected from Worm base release WS150

Table S2B

Human interactome sets from which worm gene functional linkages were inferred.
Human interactome set # unique # unique

genes gene pairs

Text mining (Bayesian-ranked co-citation) [9] 1,054 2,013
BIND [1] 1,024 1,572
BIOGRID [11] 2,076 7,079
HPRD [8] 2,689 14,909
Reactome [4] 1,152 22,125
Large-scale yeast 2 hybrid analysis [10] 2,998 6,085

Table S2C

Yeast functional genomics and proteomics data sets from which worm gene functional
linkages were inferred. Yeast linkages derive from version 2 of the network in [6], with
additional datasets incorporated where cited below.

Yeast data set # unique # unique
genes gene pairs
Text-mining (by co-citation) 2,111 17,493
mRNA co-expression 1,831 45,252
Gene neighbors 1,301 7,128
Genetic interactions 1,915 10,534
Text-mining (by literature curation) 1,467 7,007
Affinity purification followed by mass spec 1,691 26,153
analysis [3, 5]
Rosetta Stone proteins 560 793
Predicted interactions by protein tertiary 672 4,201
structures [2]
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SUPPLEMENTARY TABLE S3

The final contribution of each of the nine data types to the (A) full and (B) core
integrated C. elegans network, listing the number of unique genes and functional linkages
derived from each set. Note that a given linkage may have evidence from more than one
dataset. (C) Optimal values of D and T parameters for the data integration steps,
indicating that the linkages derived from different expression datasets were reasonably
independent, while substantial redundancy existed among the 9 datasets for the final
integration step.

S3A. Complete network

Data set # unique # unique functional
genes linkages
mRNA co-expression 14,491 287,130
Associalogs from yeast gene network 2,637 56,262
Interologs from human 3,145 30,098
Gene neighbors 2,660 13,645
Co-citation 1,300 5,577
Phylogenetic profiles 649 2,051
Genetic interactions from Wormbase 771 1,690
Worm Interactome version 5 1,165 1,411
Interologs from fly 1,141 910

S3B. Core network

Data set # unique # unique functional
genes linkages
mRNA co-expression 9,769 64,498
Interologs from human 2,865 27,737
Associalogs from yeast gene network 2,177 22,825
Co-citation 1,288 4,252
Gene neighbors 1,132 3,584
Genetic interactions from Wormbase 771 1,690
Phylogenetic profiles 560 1,558
Interologs from fly 512 321
Worm Interactome version 5 324 232

S3C. Optimized D and T free parameters for each data integration step
Integrated set D (relative T (threshold of LLS of
dependence) individual data set)
Co-expression network 1.1 0.182
Human interologs network 20.0 0
Yeast associalogs network 2.9 0.405
Wormnet (final integration) +00 0




SUPPLEMENTARY METHODS
A single network comprising the majority of genes ecurately predicts the
phenotypic effects of gene perturbation irC. elegans

Insuk Lee, Ben Lehner, Catriona Crombie, Wendy Wénglrew G. Fraser, and Edward
M. Marcotte

Caenorhabditis elegans proteome

This study is based on 19,735 predicted proteiningpdjenes (excludes 2,685
alternative spliced products) Gf elegangdownloaded from WormBase Release WS140
(2) on March 2005). All linkages and calculationggehome coverage are based on this
gene set.

Overview of C. elegans probabilistic functional gene network (Wormnet version 1.0)
construction

Different types of functional and comparative germtsndata have quite different
value for reconstructing pathways in a metazoahe different data sets are also often
accompanied by distinct internal measures of cenfieé. To integrate these data into a
composite network, we first evaluated each datausgtgy a common scoring scheme,
allowing the relative merits of each to be measupedr to integration weighted
according to their scores. Specifically, using tbg likelihood score (LS) scheme
described inZ), we estimated functional coupling between eacéhqiagenes, defined as
the likelihood of participating in the same pathwdlyen integrated the gene-gene
linkages into the final network. The resulting wetk therefore represents a unified
model of coupling betwee@. eleganggenes as estimated from the currently available

large-scale, predominantly systematically collectida.

P(L|E)/PGL | E)j

In this schemd_LS=In
P(L)/PEL)

where P(L|E) and P(-L|E) are the frequencies dfaljes (L) observed in the given
experiment (E) between annotated genes operatitigeisamepathway and iifferent
pathways, respectively, while P(L) and P(-L) represthe prior expectations €., the



total frequency of linkages between all annotafe@leganggenes operating in tteame
pathway and operating idifferent pathways, respectively). Scores greater than zero
indicate the dataset tends to link genes in theegaathway, with higher scores indicating
more confident linkages and stronger support fa& ¢genes operating in the same
pathway.

To obtain accurate estimates of dataset accuragyemployed 0.632 bootstrapping
(3, 4) for all LLS evaluations. 0.632 bootstrapping has been shovpnawde a robust
estimate of classifier accuracy, generally out-gmning cross-validation5), especially
for very small datasets (e.g., s€&3)( The data evaluation and integration strategy w
describe is therefore appropriate even for morglp@mnotated genomes. Unlike cross-
validation, which uses sampling without replacemf@ntconstructing test and training
datasets, 0.632 bootstrapping employs sampling wefplacement, constructing the
training set from data sampled with replacementtaedest set from the remaining data
that weren’'t sampled. Each linkage has a proltghati 1-1h of not being sampled,
resulting in ~63.2% of the data in the training aetl ~36.8% in the test sét)( The
overallLLSis the weighted average of results on the twq sefisal to 0.632*L Ses; + (1-
0.632)*LSin, calculated as the average over 10 repeated saniphls.

For data sets accompanied by intrinsic scores dhatcontinuous (e.g., correlation
coefficients between pairs of gene expression vggtave ranked gene pairs by the
scores and calculated log likelihood scores forshbofh equal numbers of gene pairs.
ThoselLLSs and the corresponding mean of the data intriestces for each bin were
used to derive regression models mapping the déiasic scores th.LS scores, in this
manner generatingLS scores for both annotated and unannotated gerse (sag-igure
A). For integrating evidence from multiple datassete used a modification of the
weighted sum metho®) described in ref.g) to account both for differential quality of
each data set and for correlations among the @#$a sThe weighted sum method was
modified to include a parameter, representing &LS threshold for all data sets being
integrated. The total strength of a given funailogene linkage derived from multiple

data sets was calculated as the weighted S8 ¢f individual scores as

n L
WS=Lp+)» — ,forallL > T,
251



wherel represents the bekLS score among allLSsfor that gene pai is a free
parameter for the overall degree of independenaangrthe data sets, amds the order
index of the data sets after rank-ordering themainingLLS scores for the given gene
pair, starting from the second highedtS score and descending in magnitude. The
values of two free parametei3 &ndT) are chosen by systematically testing values of D
and T in order to maximize overall performance ganeder a plot ofLS versus gene
pairs incorporated in the network) on the Gene ©@giobenchmark, selecting a single
value ofD and ofT for all gene pairs being integrated using thesas#ds. D is a free
parameter determining the (linear) decay rate efwieight for secondary evidence. It
ranges from 1 toot and captures the relative independence of thesaédsa low values of
D indicating more independence among data sets igherhvalues indicating less. As
the optimal value oD approacheso, the scheme is equivalent to taking only the &ngl
best line of evidence for a linkagky), regardless of which data set it derives from, in
this way avoiding overweighting linkages when datasre highly correlated. (Note that
this overweighting applies only to linkages suppdrby more than one dataset—Ilinks
from only a single line of evidence are not affddbg this scheme regardless of the value
of D.) We independently explicitly test the performarmd anaiveBayesian integration
of the LLS scores (here, simply the sum of thieS scores for a given gene pair), then
select the integration approach maximizing the areter a plot of. LS versus gene pairs
incorporated in the network.

We first integrated similar classes of data intmposite sets (integrating the 6 co-
expression data sets into a single set of co-esjme$inkages, integrating the human PPI
data, integrating the worm PPI data, and integgatie yeast-derived linkages), before
then integrating the 9 composite sets (§able S3A-B) into an overall network based
upon co-citation, co-expression, the Worm Intenaeoversion 5, genetic interactions,
gene neighbors, phylogenetic profiles, and conskemeractions transferred from other
species (yeast/fly/human). The optimized free matars,D andT, for each integration
steps are summarizedTiable S3C

We note that this approach minimizes the total nemab free parameters (such as by
not learning weights for all pairs of datasets), king this approach robust to

overtraining. In all, <125 free parameters wei@ngd for the reconstruction of the



complete set of several hundred thousand pairese ginkages in Wormnet from >20
million experimental observations.

The final network has a total of 384,700 linkagetaeen 16,11&. elegangroteins,
covering ~82 % ofC. elegansproteome; all gene pairs have a higher likelihadd
belonging to the same pathway than random charibe.define a model with high
confidence and reasonable proteome coverage, wedpdikelihood threshold, keeping
only gene pairs linked with a likelihood of beingthe same pathway of at least 1.5 fold
better than random chance. Using this threshodddedined the core network, containing

113,829 linkages for 12,357 worm proteins (~63%hefworm proteome).

Reference and benchmark sets

Three different reference annotation sets were tsadsess th€. elegangunctional
linkages. The Gene Ontology (GO) annotation doaaéml March 2005 from
WormBase 1) served as the major reference set for trainind lhenchmarking the
network. The GO schema lists three hierarchiesguattion, describing “biological
process” (i.e., pathways and systems), “molecwlaction” (i.e., biochemical activities),
and “cellular component” (i.e., subcellular localibn). For testing hypotheses of
functional coupling between genes, we used GheelegansGO “biological process”
annotation, which contains up to 14 different lsvelf information under the term
“biological process” within the hierarchy. We ctmsted a reference set consisting of
gene pairs sharing GO biological process annotatibm optimize annotation specificity
and comprehensiveness, we used terms belongingvéts|2 through 10 (terms above
level 2 are too general, and terms below leveloblspecific). We sorted all terms by the
number of genes annotatdeigure B), then excluded the top 5 terms, which account for
>78% of total reference set gene pairs, in ordereiduce functional bias in the
benchmark set. The following terms were omitteatbe/onic development, positive
regulation of growth rate, growth, locomotory beiloay regulation of transcription
(DNA-dependent). The Kyoto-based KEGG databa®e pfovides metabolic and
regulatory pathway annotations that are closelgteel to biological process annotations.
A KEGG map forC. elegangdownloaded on November 2005 was used to gendrate t
second benchmarking set for this study, excludimgg3 most abundant KEGG pathway



annotation terms (oxidative phosphorylation, puringetabolism, and ribosome;
accounting for >40% of the linkages) in order tanimiize bias. After the above post-
processing, there are 786,056 gene pairs sharingtation from the GO reference set,
and 9,406 from KEGG. About half of KEGG gene p&r$69 pairs) are shared between
the two reference sets. Therefore, the KEGG andr&€&ence sets fdC. elegansare
fairly independentX0). Nonetheless, to ensure complete independereeenvoved all
GO pairs from the KEGG set, then used the KEGG m{BO set as a 100% independent
set for additional tests of the network as welf@scomparison to two earlier integrated
worm network modelsl(l, 12. As an additional benchmark set, we also comsttiéhe
set of gene pairs sharing GO “cellular componentictations.

Finally, in order to effectively summarize broadnds of biological functions in the
data set, we desire only a few categories of foneli annotation. For this purpose, we
employed a reference set of functional categonas fthe clusters of orthologous group
(COG) annotation3), which is based on reconstructing homologous ggaaf proteins
in such a manner as to considerably enrich forobwtious proteins within each group,
with the functions of genes assigned within 23 troategories (such as “Transcription”
and “Signal Transduction Mechanisms”) based onvibk-annotated proteins with each
COG. We use the recently updated COG collectianititludes multicellular eukaryotic
genomes (named eukaryotic orthologous groups, 06XQ@4). These 23 categories
were further collapsed into 12 functional groups meore efficient visualization (see
Table A). We also constructed a benchmark set from gemes haring KOG

annotations.

Inferring gene functional linkages from mRNA expresion data

Gene functional linkages were calculated from nacray data of mRNA expression
as in @). Expression data are from the Stanford MicroaDatabase (SMD downloaded
on July 2005) 15, GEO databasel€), and published by Stuadt al (11). We
established an objective criterion for consideril§A microarray datasets: For each
collection of DNA microarray data (defined as aakarrays listed in SMD as from one
publication), we considered all gene pairs coregladt the 99% confidence level (by t-

test), then tested for the evidence of a relatipn&etween the Pearson correlation



coefficient (PCC) of pairs of genes’ expressionteecand the LLS score. Only sets of
experiments that showed a positive correlation veerayzed further. An example of a
set meeting this criterion is shownkgure A-2. The list of tested datasets meeting this
criterion and therefore included in the networkca#dtion is presented in Table S1A.
Two examples of datasets failing this criterion atewn inFigure C; tested but
excluded sets are now listedTiable S1B By this criterion, we selected 6 sets of SMD
data containing a total of 220 separate microarexperiments with significant
correlations between co-expression and functiossb@ations (se€able S1A), as well

as the data from Stuast al. For the Stuaret al. data set, we considered only the subset
of experiments non-redundant with those availafdiependently from SMD, resulting in
635 separate microarray experiments (the specifier@ments analyzed from the Stuart
et al. dataset are those indicated in their dataset bwyengal indices lacking
descriptions). We occasionally observed genes matlsignificant expression dynamics
across the experimentseg(, low variance expression vectors) showing highr&ea
correlation coefficients and leading to spurioust (hiologically meaningful) linkages.
We therefore filtered out such cases by requiriaghegene to exhibit significant
(typically, >1.2-fold) expression changes in soméimal number of experiments,
optimizing both the threshold of expression andimimm number of experiments for
each group of expression datasets by recall-pogcenalysis, maximizing the area under
a plot of LLS versus genes included in the network.

Gene functional linkages by physical and genetic faractions between proteins

We incorporated genome-wide yeast two hybrid amslys C. eleganggenes from
the Worm Interactome database, as well as the ghddli literature set of small scale
protein-protein interactiond 7). We treated subsets of the Worm Interactomeidiers
(literature, scaffold, corel, core2, non-core) safgdy, providing different confidence
scores for the different data subsets, rather &ghsingle averaged confidence score across
all interactions of the Worm Interactome set. Gienateractions (for ~800 genes and
~4000 interactions) were included from WormBa&g (erived from >1000 primary
publications. Benchmarking of worm protein-protemeractions is summarized in
Table S2A



Inferring gene functional linkages from genome corext

Functional linkages can be inferred between pairsgenes from comparative
analyses of genome sequences. We find the metifaalsylogenetic profiling 18-20
and gene neighbor21-23 show reasonable performance for metazoan gdriakages
for each method were derived from analysis of 1d8ognes (117 bacteria, 16 archaea,
and 16 eukaryotes). Briefly, each elegansprotein sequence was compared to every
other sequence using the program BLASTP with defeitings 24), then the alignment
scores analyzed as follows.

Phylogenetic profiles were constructed from thesemarisons and analyzed as in
(25) with the following modifications: We found thegbiles derived from organisms of
different kingdoms provided considerably differesttengths of correlation with gene
functional associations. Profiles calculated ofmgm bacterial genomes provided the
best range ofLLS scores; including archaea or eukaryotes in thdilgsodid not
significantly improve performance. Therefore, wéerred gene functional linkages from
phylogenetic profiles constructed from only the Iitterial genomes. For discretizing
BLASTP E-values during the calculation of mutualonmation between phylogenetic
profiles, we employed bins of equal numbers of ks, rather than equal intervals of
E-values, accounting for non-uniform E-value disition. In previous analyses of
phylogenetic profiles, we have observed the besilt® (measured by recall-precision
analysis using LLS scores and protein coverage @asunes of precision and recall,
respectively) from using 3 E-value bins, and themefadopted this approach. Gene

neighbor linkages were identified as #1) using both bacterial and archaeal genomes.

Inferring gene functional linkages from literature mining

We also identified functional linkages by mining thcientific literature (specifically,
Medline abstracts downloaded on December 2004)gusia co-citation approacl2q,
27). We analyzed a set dF = 7,732 Medline abstracts that included the walégdans”
in the abstract for perfect matches to either gsesnatic names or common names of

19,735 genes df. elegansscoring gene pairs according to the schem@)of (



Functional linkages derived by transferring consered gene interactions from other
species’ interactomes

The assayed subsets of different species’ intemaesaften complement one another
due to differences in bait/prey choices and expenta sensitivity, specificity, and bias.
By transferring linkages between speciee.,( the functional linkage equivalent to
‘interologs’ (conserved physical protein interangd £8), which we term ‘associalogs’),
we can collect additional gene functional linkages a given genome. We therefore
transferred both physical protein interactions &mttional gene linkages from yeast,
fly, and human into worm.

For proper identification of worm orthologs of tleoguery genomes, we used
INPARANOID (29), which reduces false negative ortholog identifam@s and has
proved to be a robust method for identifying fuaotlly equivalent proteins8Q). Based
on the worm and yeast ortholog pairs by INPARANOW2, inferred functional linkages
between worm genes based upon linkages in the Ipiigba functional gene network
(version 2 8) of the network described iR)). We found that transferring linkage
information from the individual yeast data setsoprto integration provided better
performance (assessed by recall-precision anatysitheC. elegansbenchmark) than
direct transfer of the integrated yeast networlkdges. We employed the modified
weighted sum method of linkage integrati@ described above. Additional functional
linkages were inferred from the fly yeast two hyometwork 81), as well as from several
sets of human protein interaction data ($eble S2B. Linkages from the individual
human protein interaction sets were first integtatsing the weighted sum method into a
single set of human-derived linkages before intiggawith other datasets. Prior to this
integration, individual interactions were eithesigaed confidence scores according to
the hypergeometric probability of occurring at ramd given the total number of
interactions of each partner, calculated as3@®),(or were assigned single confidence
scores for all linkages derived from a single tygeexperiment, choosing whichever

scoring scheme performed better by recall-preciaitalysis.

Detailed protocol for reconstructing theC. elegans gene network



To more clearly define the procedure we employedjémerating the network, we

provide the full procedure as pseudo-code:

1. Identify worm orthologs of human, yeast, and flpteins using INPARANOID
2. For worm DNA microarray data
2.1.For each set of worm DNA microarrays (correspondimgll arrays from a given
publication, as defined in SMD)
2.1.1. Calculate the mean-centered Pearson correlatidfidert (PCC)
between all pairs of genes’ expression profiles
2.1.1.1.Calculate (by t-test) the minimum correlatcoefficient for 99%
confidence given the # of experiments in the st further analyses,
consider only pairs meeting this criterion.
2.1.1.2.Evaluate the regression between PCC anddHikelihood score
(LLS) of sharing pathway annotations
2.1.1.2.1. Reject set if no relationship is evident betweelCR@d LLS
2.1.1.3.Filter genes considered in the correlagioalysis by requiring each
gene to exhibit significant expression changes,(exgfold, typically
~1.2-fold) in some minimal # of experiments acrdesdataset.
Optimize these 2 parameters by recall-precisiotyaisa maximizing
the area under a plot of LLS versus # of genesqgaating in the
linkages.
2.1.1.4.Fit regression (typically sigmoidal) betwd®CC and LLS,
considering only genes passing the optimized iiltecriteria (2.1.1.3)
and only gene pairs whose correlation exceeds3fe @®nfidence
level (2.1.1.1).
2.1.1.5.Using regression fit, assign LLS scoreslltgene pairs whose
correlation exceeds the 99% confidence level, olioly unannotated
gene pairs.
2.1.1.6.Select minimum LLS threshold from inflectipoint of regression
model. Retain only LLS scores/gene pairs surpggshbireshold.
2.2.Integrate LLS scores from complete collection df & DNA microarrays
2.2.1. Calculate the weighted sum of LLS scores for eastegair across the
analyses of DNA microarray sets
2.2.2. Optimize the choice of the weighting parameters® & using recall-
precision analysis by maximizing the area unddotqd LLS versus # of
genes participating in the linkages. CompanediveBayesian integration,
and choose from weighted integration vensaiveBayes by recall-precision
analysis.
3. For each set of worm protein-protein interactioRIjRlata or genetic interaction data
3.1. Measure the LLS score for all pairs in the set
3.2. Assign this LLS score to all interacting pairslie tset, including unannotated
pairs
4. For human PPI data
4.1.For each set of human PPI data, analyze PPI geddogiteach experimental or
computational approach (e.g., yeast two-hybridt-texing, etc.) independently



4.1.1. Measure the LLS score for all worm gene pairs gpoading to
interacting human proteins in the given data setguthe given approach
4.2.Calculate the weighted sum of LLS scores for eastegair across the sets of
human PPI data, optimizing the choice of D and rapeeters by recall-precision
analysis as in (2.2). ComparertaiveBayesian integration, and choose from
weighted integration versumiveBayes by recall-precision analysis.

4.3. Fit regression between LLS and weighted suiméiveBayes sum), then assign
LLS scores to all worm gene pairs correspondingteracting human proteins,
including unannotated pairs

5. For worm co-citation, phylogenetic profiles, anadhgaeighbors data

5.1. Fit regressions between LLS and data-intrinsices@¢rlog(random probability
of co-citation), mutual information of phylogenefimofiles, and —log(random
probability of being gene neighbors, respectively)

5.2. Using regression fit(s), assign LLS scores to @ltited (or co-inherited or co-
neighboring) gene pairs, including unannotated gpees

6. For fly PPI data

6.1. Considering worm gene pairs corresponding to ictarg fly proteins, fit
regression between LLS and fly PPI confidence scprevided with fly PPIs

6.2. Using regression fit, assign LLS scores to all wgene pairs corresponding to
interacting fly proteins, including unannotatedrpai

7. For yeast functional network data

7.1. Analyze each data type (e.g., DNA microarraysnéifipurification/mass spec,
etc.) separately, considering worm gene pairs wieast orthologs are linked
by the given data type.

7.1.1. Fit regression between LLS for worm gene pairs ldr§l associated with
corresponding yeast gene pairs in the yeast network

7.1.2. Using regression fit, assign LLS scores to all wgene pairs
corresponding to linked yeast genes, including notated pairs

7.2.Integrate yeast-derived linkages by calculatingwieeghted sum of LLS scores

for each gene pair across the set of yeast dags tygptimizing the choice of D

and T parameters by recall-precision analysis 2.2). Compare toaive

Bayesian integration, and choose from weightedynatieon versusiaiveBayes

by recall-precision analysis.

7.3.Fit regression between LLS and weighted sunmméiveBayes sum), then assign
LLS scores to all worm gene pairs correspondingnted yeast genes, including
unannotated pairs

8. Integrate all linkages using the weighted sum natbptimizing the choice of D and

T parameters by recall-precision analysis as i2)(Zompare tmaiveBayesian

integration, and choose from weighted integratiersusnaiveBayes by recall-

precision analysis.

Evaluation of the integrated network model
The final C. elegansetwork model has been assessed extensively asiagety of
approaches. First, the accuracy of linkages inrtegrated model was evaluated on the
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GO annotation benchmark using 0.632 bootstrappindescribed above and illustrated
in Figure 1A. As expected, we observe the LLS scores of liakag increase with the
number of lines of supporting evidendagure D). The LLS scores decrease reasonably
uniformly as a function of network size, as showrrigure E. We observe the linkage
scores to be reasonably robust even to large changbe reference annotation set—for
example, limiting the GO reference set to termdewels 5 — 10, rather than 2 — 10,
results in removal of ~36% of all reference set fposiexamples. However, a plot of
recall versus precision using this reduced refereamnotation set shows little change in
performance from the larger s&igure F).

Linkage quality was also evaluated on the KEGG tatian set, as described in
Figure 1D. We also evaluated the network on the KEGG mif3 set, which
represents a small, highly biased, but 100% indégminsubset of reference linkages.
This benchmark should be considered to providen@ddound of accuracy, as all high-
confidence linkages confirmed by GO have been remiowWonetheless, the ranking of
network accuracies iRigure 1D is generally preserved using this refererfaguyre G).
Figures H-1 to 5 and Qpresent comparisons of Wormnet with 4 previ@uselegans
gene networks on 5 different annotation sets, dioly KEGG annotations, KOG
annotations, GO cellular component annotations,b@®gical process annotations with
terms related to protein synthesis removed, andnibst recent set of GO biological
process annotations. In each test, Wormnet showsiderably increased recall of both
genes and linkages, while maintaining an accuraayparable to the other networks.

Next, we examined functional clusters in the nekyavith the notion that genes of
the same pathway should generally cluster stroimgtize overall network. Genes of the
core network were clustered by their connectivityl anodules were defined as B),(
requiring each module to contain at least 3 mengagres. In total, we defined 402
modules (median size 8 genes) covering 8@ 98legangroteins (~42 % o€. elegans
proteome). The functional coherence of genes eénsdime module was evaluated as in
(2). Figure I illustrates the high functional coherence of genethe modules using 12
collapsed KOG gene functional categori@galfle A; represented by different color

codes). The core network is therefore a reliabbeleh of functional associations among
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C. elegansgenes giving rise to biologically reasonable amdhcfionally coherent
estimates of higher level pathway organizatiofirelegans

The observation that many RNAI phenotypes are gtyopredictable from Wormnet
vl suggests that genes exhibiting similar RNAI ptgpes are also clustered in the
network. We explicitly tested this notion for plagypes of differing specificity. We first
examined how genes exhibiting 3 broad categorie®RNAI phenotypes (nonviable,
growth defective, visible post-embryonic phenoty(@3)) were distributed across the
modules. Of the 402 modules, 91 showed strongesing of phenotypes, far greater
than random (Z-score = 7.0d< 10™), with >=25% of the genes in each module sharing
a particular broad phenotype, and the remainingutesdoeing dominated by genes with
no visible loss-of-function phenotype. The modullest we identifyvia clustering of
gene linkages clearly have some capacity for ptedicthe phenotypic outcome of
perturbing gene activity. However, since many datassed in network construction are
still incomplete, the modules that we discoverléely to be correspondingly of limited
resolution. To improve our predictions, we thusulsed primarily on individual linkages
between genes, rather than module membershipm&sas to predict phenotypes.

Interestingly, we observe a decay in the probabiit genes being essential with
increasing distance from other essential geriégufe J), also consistent with the
clustering of genes conferring these phenotypéisametwork. Similarly, the penetrance
of essentiality decreases in a similar fashiéigire J).

As described in the main text, we exhaustivelye@3/ormnet’s ability to predict the
genes identified in each of 43 genome-wide RNAinatgpic screensTable C). Using
ROC analysis Kigure S1), we find 29 of these screens are strongly prafblet from
Wormnet, 10 are weakly or moderately predictabhel 4 are predicted at no better than
random levels. This trend depends strongly upatuthng network edges supported
only by single lines of evidenc&igure R), arguing that while data integration is useful
for identifying multiple lines of support for ea@ssociation, an equally important role is
to select confident linkages where only one linewtlence is available.

We next examined topological properties of the oekwand compared these with
properties of a randomized version of the netwoRigure K-1 plots the node degree

distribution of the coreC. eleganggene network. Many network models derived from
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complex biological systems are characterized byedtaee degree distributions34).
However, the core functional gene network is naleséree. Instead, we find the degree
distribution is well fit ¢* = 0.99) by a combined power-law/exponential decadeh
following a power-law for genes with lower connety, then exponential decay for
genes with degrees higher than a characteristiesiiotd f = 101, Figure K-1).
Previous protein interaction networks have beemres! to be scale-free, although it has
been argued that this is simply a consequenceanimplete sampling of the networks
(35. Wormnet's non-scale free nature may simply beoasequence of the more
complete network, or possibly a variation due sontore inclusive linkage type, which
spans physical as well as other interactions. @ossibility is that it may derive from
practical limits on the sizes of typical cellulatpways—this would imply a rough upper
bound on pathway size, resulting in systematic uneleresentation of genes with the
highest connectivities.

In further examination of Wormnet topology, thetdizution of shortest path lengths
between all gene pairs in the netwokigre K-2) differs from that of a randomized
version of the network that was calculated by ramgo swapping edges while
maintaining each node’s degreg6). The real network shows a significantly higher
frequency of long paths, indicating that the netwexhibits considerable non-random
structure. Consistent with the effective captufepathways and processes in the
network, Wormnet shows considerably more clustetivag expected at randorfRigure
L).

We tested for representational bias in the corevorét by ensuring that genes from
different functional categories were evenly repnése in the network. We measured the
retrieval rate of genes from each of 12 functionategories Table A) to test for
systematic functional bias among the linkag&sgure K-3 illustrates that while some
bias exists for genes of protein synthesis amogb-bonfidence linkages, such bias is
minimal across the other functional categories,cwigshow similar retrieval rates. The
final core network includes ~60-90% of the geneanfreach of the 12 functional
categories. We attempted to clarify the contributio the predictive power of specific
GO annotations made by each type of evidence iategrinto the network ikigure M.

To further evaluate the coverage of Wormnet forfedént biological systems, we
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demonstrated that Wormnet effectively captures ‘thelecular machines’ previously
defined by Gunsalust al. (37) by testing the ability of Wormnet to predict cooments
of each machine using ROC analystgy(ire N).

We asked if genes linked in Wormnet were more Yyikel be co-expressed in the
same tissues. We observed this to be the ¢agaré O) at levels significantly above
random expectation, supporting the observation YWatrmnet is capable of making
tissue-specific phenotypic predictions, at leaspant because genes linked in Wormnet
have a higher chance of being expressed in the 8asues.

Finally, we compared the prediction of RNAi phenmag by Wormnet and four
previous networks using a set of 10 RNAI phenotyygsorted after all networks were
constructed and/or publisheligure P). As expected, Wormnet shows greatly increased
coverage of genes with each phenotype (accompéasigttreased accuracy), largely due
to its increased coverage of the proteome overiguewnetworks. The full version of
Wormnet shows enhanced performance over the care sspporting the use of

probabilistic linkages for phenotype prediction.
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FIGURES

Figure A

Regression models derived between the data intrstires for each functional genomic
data set and log likelihood scorelsL. The likelihoods of functional association
between gene pairs derived from the given experiaheor computational lines of
evidence was assessed on a reference set of gesa@@aved from the Gene Ontology
biological process annotation. Lines of evidemszude: (A-1) co-occurrence of two.
elegansgene names in across the set of Medline absti(@jts(A-2) mRNA co-
expression (as an example of a time series prgfftalowing dauer exit38); see Table
S1), (A-3) phylogenetic profiles calculated from71dacterial genome2%), (A-4) gene
neighbors calculated from 133 archaeal and battgeimomes, ranked used the scheme
of ref. 1), (A-5) linkages between orthologs in a yeast pholstic functional gene
network @), (A-6) interologs from the fly yeast two-hybriciéed interactome3(), (A-7)
interologs from human protein interaction dafalfle S2B. Each filled circle represents

a bin of between 500 and 2000 gene pairs, depemdintata set.
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Figure A
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Figure B
The GO biological process reference set was cartsttifrom terms in GO level 2 to 10,

removing terms annotating excessive genes. Tbissplows the number of reference set
gene pairs contributed from each GO annotatiorke@driy abundance. The top 5 terms
account for >78% of the reference set gene paidsvare therefore omitted to remove

excess bias in the reference set.
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Figure B
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Figure C

Two examples of DNA microarray datasets that faited test for inclusion in the
network. For the GEO heat shock data(86), we considered all gene pairs correlated >
0.87 {.e., the 99% confidence level for a sample size driays) and observed no
elevated LLS score. Likewise, for the SMD hypoaéda set40), we considered all gene
pairs with correlation coefficient > 0.80¢, the 99% confidence level for a sample size
of 9 arrays) and observed no elevated LLS scorentr@st these cases with the SMD
Dauer example ifrigure A-2, which shows excellent correlation between PCCIArtsl

and which was therefore included.
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Figure C
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Figure D

The number of lines of evidence for a linkage dates with the LLS of the linkage, as
shown by plotting the distribution of LLS scores fmkages with different numbers of
lines of supporting evidence. Each distributiorsisnmarized as a standard bar-and-
whiskers plot, with the central horizontal line icating the median LLS score and the
boundaries of the box indicating the first anddhquartiles of the distribution. We see
up to 5 lines of evidence for individual links—sulatks are measurably more accurate

on average.
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Figure D
For the core network:
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Figure E

The distribution of LLS scores in the network igpagent in a plot of network size as a
function of LLS score. The core network represethis top 113,829 linkages and
captures the strongest available linkages, follgwiutich linkage scores decline towards

LLS = 0, with the full network consisting of 388 linkages (cumulative LLS > 0).
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Figure E
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Figure F

To demonstrate the robustness of the training #lgor employed, we tested the
Wormnet on a new reference set representing onlyt&@s between level 5 and 10
(506,517 positive example gene pairs), which reraov280,000 positive example gene
pairs from the original reference set (786,056 tpasiexample gene pairs). Even after
removing ~36% of all reference examples, there veashajor change in the performance
as measured by recall-precision analysis.
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Figure F
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Figure G

Evaluation of Wormnet v1 and two earlier worm geeévorks L1, 12 by comparison

to an independent set of pathway relationships oseg of gene pairs belonging to the
same KEGG pathways, but not sharing GO biologicatgss termd.e., a set of

pathway linkages completely independent from G@glues are otherwise calculated as
in Figure 1D. Note that this benchmark should be considergutdweide a lower bound

of accuracy, as all high-confidence linkages coméid by GO have been removed. This
removal most affects the highest confidence interas in the intersection of all three
data sets. Nonetheless, the general ranking wofanktaccuracies seen kigure 1D is

preserved using this reference set.
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Figure G
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Figure H

Comparative performance of Wormnet and four o@eelegangene networks on five
reference linkage benchmark sets: (H-1) KEGG paylsyw@d-2) GO cellular component
annotations, downloaded March 2005, curated by véamgdhe dominant terms (i.e., that
annotate the most genes: plasma membrane, cytoptasheus), (H-3) GO biological
process annotations downloaded March 2007, (H-4p®(@gical process annotations
downloaded March 2005 with protein biosynthesistesl terms removed (protein
biosynthesis, translation, ribosome biosynthe&8|A process, etc.), and (H-5) KOG
protein function categories. Note that in each tbe 5 network models show
comparable ranges of precisions, but differ dracadlyi in recall of genes and/or
linkages, with Wormnet showing higher recall thhe dther networks. Comparison of
the two type of recall for the networks fromdtial.and Gunsalust al.indicates a
sparse network and a dense network, respectibye also that the network of Zhong
& Sternberg employs GO ‘biological process’ terraglata features for calculating the
network, and thus the precision of this networkttese annotation sets may be an

overestimate.
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. Testing versus the GO ‘biological process’ (lsrch 2007) reference set
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H-5. Testing versus the KOG protein function categy reference set
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Figure |

For the network of functional modules, we summatigefunctions of the genes in each
module by plotting the distribution of 12 collap9€@G functional categoried &ble A)
among the 402 modules, ordered according to tharai@cal clustering tree. Theaxis
indicates the number of genes per cluster in angiuactional category, indicated by
color. The functional coherence of genes in edakter is apparent; adjacent modules
(sequential along the axis) are often functionally related. The netwofkfunctional

modules covers 8,195 worm proteins (~42 % of thenwproteome).
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Figure |
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Figure J

Essentiality of genes appears to ‘diffuse’ acrbgsretwork. (Left) Based on RNAI
phenotype, we categorized genes into two classasyenic lethal (emb) and non-
embryonic lethal, and plot the % of genes thateane at 1, 2, and 3 hops from each emb
gene (0 hops corresponds to 100%). We find tleapthbability of being embryonic

lethal decays with increasing distance from otmebryonic lethal genes in the network.
(Right) For the cases where essential genes d&edljiwe also examined the penetrance
of the embryonic lethal RNAi phenotype as it difgghrough the network. We
measured the mean % embryonic lethality for legiegles linked by 1, 2, and 3 hops to a
gene with 100% penetrance. The mean penetrariethafity appears to decay with

increasing distance from the 100% penetrant emicyethal genes.
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Figure J
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Figure K

Analyses of topological properties of the core ratw (K-1) The network’s degree
distribution is not scale-free, as shown here withlot of the probabilityR(k)) of each
degreeK), fit by a power-law with exponential cut-off (redrve;r? = 0.99). (K-2) The
distribution of shortest path lengths between aeligpairs in the core network shows
higher frequencies of long shortest path lengths tire seen in a randomized version of
the network, indicating extensive non-random stiectn the actual network. (K-3) The
cumulative retrieval rates of genes in each ofutftfional categoriesT@ble A) as a
function of network sizei.g., rank ordering linkages HyLS score and measuring
retrieval as a function of score threshold), shtvas there is minimal systematic bias for

the different gene functions.
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Figure
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Figure L
Wormnet is considerably more clustered than a naviled version of itself, as seen by

plotting the clustering coefficient (as defined\Matz & Strogatz41)) as a function of

network size.
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Figure L
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Figure M

We tested the contribution to the predictive powkspecific GO annotations made by
each type of integrated data. Specifically, wenaxad how the different lines of
evidence contribute to linkages from each GO teconsidering the top 290 GO
biological process terms with at least one Wornimét For each evidence-GO term
pair, we calculated the extent of contribution bgttevidence towards that GO term as:
Score = total true links with the evidence / tqtatsible true links among genes with the
GO term.

The matrix of evidence-GO term relationships isveamdollowing hierarchical clustering
(42) and indicates by increasing red intensity theetxbf contribution of a given line of
evidence (columns) to a given GO term (rows). é&@mple, the strongest contributions
to linkages relating to the GO term “proline bio8sis” were made by phylogenetic
profiles and gene neighbors datasets, while tlomgést contribution to “transcription

initiation” was made by the yeast and human dataset
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Figure M
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Figure N

We examined the extent to which Wormnet captures'tiolecular machines’ reported
by Gunsalust al. (37), testing the ability to recover each Gunsalushimecusing ROC
analysis ie., as for the gene groupshigure 3). Note that none of the RNAI phenotype
data used by Gunsales al. to construct their network was used in the corsma of
Wormnet. If components of a given machine aretehesl in the network, we expect a
strongly predictive ROC plot, with a correspondingdrge area under the ROC curve
(AUC) close to 1.0. By contrast, if the componetdsnot cluster at all, we expect no
better than random performance (AUC = 0.5). Weenlesthat the machines are strongly
recovered by Wormnet, as represented by standar@nibwhiskers plots, with the
median AUC indicated by the central horizontal liaed the boundaries of the box
indicating the first and third quartiles. By comfrarandomizing the linkages in Wormnet

destroys the signal.

The list of Gunsalust al. machines tested:
. Actin (5 genes)

. APC (6 genes)

. Chromatin maintenance and nuclear membraneifum@l genes)
. COPI complex (4 genes)

. F1LFO ATPase (6 genes)

. Histones (7 genes)

. MRNA protein metabolism (35 genes)
. MT cytoskeleton (13 genes)

. Oocyte integrity meiosis (47 genes)
10. Polarity (6 genes)

11. Proteasome (26 genes)

12. Ribosome (59 genes)

13. Translation initiation (5 genes)

14. Vacuolar ATPase (9 genes)

OCoO~NOOUITDE WNPE
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Figure N
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Figure O
Linkages in Wormnet tend to connect genes expresstte same tissue. We measured
how often genes linked in Wormnet are also co-esq@é in a given specific tissue, using
for this purpose four tissue-specific SAGE librarielerived from specific flow-
cytometry-purified GFP-marked cell populations (MgKet al. 43); data downloaded
from http://elegans.bcgsc.bc.ca). The 4 tissuag warified by McKay et al.43) using
either microdissection or flow cytometry on tissspecific promoter::GFP marked cell
populations. The depth of SAGE analysis (the nunabeotal tags sequenced) and the
number of worm genes identified by at least on@ierge tag are as follows:

Gut specific, 54,001 tags, 6,503 worm genes

Neuron specific, 91,752 tags, 8,558 worm genes

Oocyte specific, 160,053 tags, 8618 worm genes

Pharynx specific, 144,788 tags, 8772 worm genes

We measured the enrichment of tissue specific guession of two genes in the
Wormnet-core using the following measure:
P(tissue specific co-expression) = # of (gene pghms are linked and co-expressed in the

tissue) / # of linked gene pairs.

We observed that genes linked in Wormnet are sagmfly more co-expressed spatio-
temporally in gut, neurons, oocytes, and pharym@xthene pairs from random networks
generated with the same number of genes and liskag&Vormnet (error bars indicate
+/- s.d. following 10 random trials), with >200% reiment over random for tissue-

specific co-expression in all four tissues.
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Figure O
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Figure P

Prediction of 10 genome-wide RNAI screeAd-63 published after June 2006¢(, after
all networks were constructed) by using Wormnetfaur other C. elegansgene
networks. For each network, the median area utideROC curve (AUC) for each of
the 10 phenotypes was calculated aBigures 3andS1, then plotted versus the median
fraction of the seed gene sets covered by the mktwirror bars indicate the first and
third quartiles. Wormnet shows increases in batbueacy and coverage over other
networks at predicting RNAIi phenotypes, presumahblg to its more comprehensive
nature. Note also that the full network shows iowed performance over the core

network, indicating the utility of probabilisticnkages for this purpose.
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Figure P
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Figure Q

Utility of linkages supported by single lines ofidence. While data integration acts in
part to increase support for each given linkagenaportant role is the selection of
confident linkages with only single lines of eviden The importance of these latter
cases can be seen clearly in a plot of the efftdadsly including single-evidence (SE) or
multiple-evidence (ME) interactions on the accurang coverage of Wormnet — without
the SE interactions the coverage is massively mtluderformance of the network of
Zhong & Sternberg is included for comparison pugsosMeasurements are made on the

function benchmark based upon KOG protein functiategories.
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Figure Q

F ! S

® —8— Zhong et al. 25

g | —e— WormNet X

o9 6 | —e— WormNet ME =

BE ol I\—.— WormNet_SE o

28 511 N =

T O | GO biological =

= *g 4 | Process coverage 2

= (34.7%) O

= O

o O 3 o

20 —

5x o

235 2 D

5 O

O I ]
1 E L x J D_ 20 T T T T

0 20 40 60 80 100 0 20 40 60 80 100
Genome coverage (%) Genome coverage (%)

7

Cumulative log likelihood score
by KOG functional links

Precision of KOG functional link (%)

1 T T T 20 T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

KOG functional link coverage (%) KOG functional link coverage (%)

52



Figure R

The use of single-evidence interactions is alseerdsd for the network’s ability to
successfully predict the genes associated with Rpl#enotypes. The plots shows a
comparative performance of Wormnet, Wormnet subsetstaining only multiple
evidence or only single evidence linkages, andriggvork of Zhong and Sternberg on
prediction of the complete set of 43 RNAIi phenog/peFor each network, the median
area under the ROC curve (AUC) for each of the phygres (calculated as Figures 3
and SJ) is plotted versus the median fraction of the sgede sets covered by the
network. Error bars indicate the first and thindagiles. Single evidence links are

therefore critical for the full predictive power Wormnet.
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Figure R
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TABLES
Table A

Twelve functional category-keys collapsed from Z3& (Eukaryote clusters of
orthologous genes) functional category-keys. TH&skeys were used for data

Collapsed| Collapsed key description Corresponding
key KOG key(s)
01 Metabolism G EFHIPQ
02 Energy C
03 Cell cycle, DNA replication/recombination/repair , D
04 Transcription, RNA processing A K
05 Protein synthesis J
06 Protein post-translational modification, turngve @)
folding
07 Nuclear/Chromatin structure/dynamics B,Y
08 Cellular transport U
09 Cell motility N, Z
10 Signal transduction T
11 Defense \
12 Cell wall, membrane, envelope, extracellularcttire | M, W
visualization.
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Table B. 50 core and 124 non-core interactors tesd by RNAI for their ability to
suppress the SynMuv phenotype

These genes represent the immediate neighbourbeof tknown suppressors of the

synMuv pathway (the genedp-1, gfl-1, mes-4, pgn-28, ZK1127.3, MO3C1548 59)
that could be targeted by RNAI using clones from Atinringer feeding library3Q).
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Table B.

Gene targeted (Wormbase Interaction
WS140 Public gene name)  classification
act-1 core
act-2 core
act-3 core
act-4 core
arx-5 core
Cco4D8.1 core
C09H10.8 core
Cl4B1.4 core
C17E4.6 core
dac-1 core
daf-12 core
egl-45 core
egr-1 core
epc-1 core
FA9E10.5 core
F53F8.1 core
gei-8 core
hda-1 core
hda-4 core
hmp-2 core
hsp-1 core
lin-53 core
lin-59 core
Ism-1 core
M04C9.5 core
mdl-1 core
mep-1 core
mes-3 core
mes-6 core
mom-2 core
mrg-1 core
mys-1 core
npp-9 core
ogt-1 core
pcaf-1 core
pgp-1 core
psa-4 core
RO7ES5.3 core
R08C7.3 core
ruvb-1 core
ruvb-2 core
set-2 core
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Spr-1
tra-1
trr-1
unc-55
VF13D12L.1
Y105E8A.17
Y110A7A.16
zif-1
apr-1
aat-5
aat-6
apl-1
arl-5
arx-2
B0207.6
B0336.5
bir-1
bub-1
C07A9.2
C08B11.6
CO8F8.1
C10C6.6
C13F10.2
C13F10.7
C16C10.1
C17H11.4
C26C6.1
C26F1.3
C28A5.1
C28H8.1
C32D5.3
C35B8.3
C35D10.13
ccf-1
ccr-4
clr-1
cyb-3
dnc-1
dnj-5
dom-6
EO2H1.1
egl-18
elt-6
FO1D4.5
F22E5.9
F32B6.3

core
core
core
core
core
core
core
core
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
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F33G12.4
F41H10.6
F44F4.2
F46B6.5
F47B7.7
F54D10.5
F55A3.3
F55A3.7
F55C5.7
F55G1.7
F57C2.3
F57C9.3
F58G6.1
frm-7
gsk-3
H19N07.2
hda-3
his-1
his-10
his-14
his-26
his-31
his-37
his-38
his-46
his-5
his-64
his-67
hmg-1.2
hum-1
ima-3
ire-1
isw-1
K03B8.4
KO3H1.7
K05C4.7
K06A9.1
lig-1
mdf-2
mdt-18
mpk-1
pgp-12
pgp-13
pgp-14
pgp-15
pgp-2

noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
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pgp-3
pgp-4
pgp-6
pgp-7
pgp-9
RO2E12.2
RO2F2.7
RO6A4.8
RO7ES5.10
R12E2.10
R144.4
rfp-1
rnp-2
sax-1
srj-44
srt-67
srw-35
TO1B7.5
T04C9.1
T07G12.6
TO9F3.2
T13F2.2
T16G12.5
T21F4.1
T22C1.5
T24C4.6
T24D1.3
T24F1.2
tfg-1
unc-16
WO02F12.6
Y106G6H.15
Y39B6A.1
Y44E3A.6
Y53C12A.4
Y5F2A.4
Y87G2A.10
ZK1127.10
ZK863.3

zyg-9

noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
noncore
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Table C.

List of RNAI screens predicted from the network aised to annotate Wormnet v1
modules with enrichment for phenotypes. Predittgbndicates ability to recover genes
with the marked phenotype in leave-one-out ROCyamalFigure S1).
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Table C.

Phenotype Predictability Library screened Reference

Nonviable strong Ahringer 33

Growth defective (not Nonviable) strong

Visible post-embryonic phenotypes (not weak

nonviable/growth defective)

Dumpy strong

Body morphology defect strong

Small strong

Long strong

Clear strong

Blistered strong

Protruding vulva strong

Egg laying abnormal weak

Patchy coloration strong

High incidence of males weak

Ruptured strong

Sluggish weak

Uncoordinated (not Nonviable) weak

Fat content reduced random Ahringer 66)

Fat content increased random

Transposon silencing defective strong Ahringer 57)(

Mutator weak Ahringer %8)

Polyglutamine toxicity enhanced strong Ahringer 59)(

Germ line apoptosis increased random Ahringer 60) (

Synthetic multivulva strong Ahringer 610

Egg osmotic integrity abnormal strong Cenix 62

Egg size abnormal n/a

Pace of development abnormal strong

Pace of p-lineage development abnormal strong

Severe pleiotropic defects strong

Aldicarb resistant/synapse function defective weak 2,072 genes from (63)
Ahringer

Lifespan increased (Hamilton) weak Ahringer 64X

Lifespan increased (Hansen) strong Ahringer 65) (

Molting defect strong Ahringer 66)

RNA interference defective strong Ahringer + Vida(67)

PTEN@af-18 synthetic lethality weak Ahringer 68)

Radiation sensitive strong Ahringer 44

FSHR1 synthetic interactions random 45(

Axon guidance weak 4,577 genes fron46)
Ahringer

Osmotic stress response strong Ahringer a47) (

Distal tip cell migration strong Ahringer 49)

dsRNA uptake strong Ahringer 49

Meiotic maturation strong Ahringer 50)

Suppressors qfar-2 lethality strong Ahringer 51

MAT-3 suppressors strong Ahringer 523

Lifespan increased (essentials, Curran) strong gedes from (53)
Ahringer
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Table D

List of the top 200 genes predicted to incre@selegandifespan found by using the 29
genes identified by Hansest al. (65) as a seed set. Predictions confirmed by the
longevity screens of Hamiltoet al. (64) and Curran and Ruvkub3) are indicated.
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Table D.

Prediction Sum of LLS Confirmed by
In Hansenet al. .
(Wormbase WS140 scores to Hamilton et al. or
- seed set?
Public gene name) seed gene set Curran & Ruvkun?
isp-1 13.67
H28016.1 10.88 Yes
F58F12.1 10.42
R53.4 9.95
atp-2 9.93 Yes
Y82E9BR.3 9.87
asg-2 9.87 Yes
asg-1 9.87
TO2H6.11 9.69
Y69A2AR.18 9.3
F53F4.10 9.14
W10D5.2 9.12
T20H4.5 9.12 Yes
tag-99 9.02
gas-1 9.02
F27C1.7 8.42 Yes
T10B10.2 8.37
VWO06B3R.1 8.14
T24C4.1 8.14
ZC410.2 8.14
E04A4.7 8.14
Y54F10AM.5 8.09
asb-2 7.77 Yes
W09C5.8 7.72 Yes
F22D6.4 7.71
asb-1 7.65
cyc-1 7.61 Yes
Y56A3A.19 7.53 Yes
ZC116.2 7.53
C34B2.8 7.49
D2030.4 7.4 Yes
Y51H1A.3 7.33
Y54E10BL.5 7.33
Ipd-5 7.33
Y63D3A.7 7.33
C33A12.1 7.33
Y94H6A.8 7.33
F59C6.5 7.33 Yes
C16A3.5 7.33
C25H3.9 7.33
mdh-1 7.32
Y37D8A.14 6.81 Yes
F54D8.2 6.75
Y71H2AM.5 6.72
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T10E9.7
Y45G12B.1
Y53G8AL.2

nuo-1
cco-1
Y57G11C.12

K04G7.4

F43G9.1

F25H2.5

T22B11.5

F36A2.7

WO02F12.5

ZK809.3

C37E2.1

TO8B2.7

B0303.3

C30F12.7
F35G12.2
ech-1

F56D2.1

daf-21

F33A8.5

rps-0
rps-19
mev-1

CO6E7.1

unc-97
unc-112

T26E3.7

ctb-1

TO6D8.5

CO6E7.3

vha-12
rps-11
tag-32
unc-89
F23B12.5
R05G6.7
let-60
fum-1
rps-2

CO6H2.1

Y110A7A.12
pab-1
F55A12.8
rab-1
unc-52
Y105C5B.12
rps-4
rps-1

6.68

6.6
6.19
6.19
6.11

541
5.29
4.46
4.45
4.21
3.81

3.8
3.68
3.57
3.57
3.57
3.57
3.57
3.52
3.16
3.12
3.12
2.98
2.94
2.78
2.72
2.71
2.66
2.65
2.65
2.63
2.61
2.61
2.54
2.53
2.52
2.51

2.5
2.47
2.46
2.46
2.44
2.43
2.39
2.38
2.35
2.35
2.34
2.33
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Yes
Yes

Yes

Yes
Yes

Yes
Yes

Yes
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C16C10.11
RO4F11.2
deb-1
Y49A3A.3
pab-2
C16A3.3
rab-7
pdk-1
C53A5.1
unc-11
rps-13
rps-7
vha-10
rps-26
rab-5
rpl-16
rps-23
rab-11.1
Y48B6A.13
B0511.6
pas-1
K02F2.2
rab-6.2
rps-8
rpl-15
unc-10
smg-4
tba-4
egl-45
unc-8
tag-29
tag-207
T26C12.1
F55F8.3
rps-27
LLC1.3
rab-6.1
ran-4
rps-24
Y46E12BL.2
MTCE.26
F33A8.6
rhi-1
rap-1
rpl-9
app-1
rpl-5
sri-45
rps-9
ras-1

2.28
2.27
2.27
2.26
2.22
2.21
2.21
2.19
2.19
2.19
2.16
2.14
2.12
2.08
2.05
2.03
2.02
2.02
2.01
2.01
1.98
1.95
1.94
191
1.89
1.89
1.88
1.87
1.87
1.82
1.81
181
181

18

1.8

1.8

1.8
1.79
1.79
1.78
1.76
1.76
1.75
1.75
1.74
1.73
1.72
1.72
1.71
1.71

66

Yes

Yes

Yes



pat-3
rps-15
F56D2.6
rps-3
ran-3
rps-10
byn-1
B0513.9
sem-5
W02B12.8
rfc-2
unc-5
rps-22
C49G7.4
ZK430.1
rps-18
pat-4
pat-6
F13H8.2
C18E9.6
mel-11
cav-1
ifg-1
inf-1
pbs-3
F23C8.5
eif-3.B
acs-17
Y40B1A.4
ZC373.1
F54A3.4
atm-1
hmp-2
eif-3.K
Y48G1A.4
F54A5.3
F59A2.3
unc-1
rps-30
tag-55
C32B5.6
T21B10.2
RO4A9.1
eif-3.E
C04C3.3
rpl-24.1
rps-5
rpl-13
rps-17
clk-1

1.7

1.7
1.69
1.66
1.66
1.65
1.65
1.64
1.64
161
161

1.6

1.6
1.58
1.58
1.57
1.57
1.57
1.57
1.54
1.53
1.53
1.53
1.53
1.52
1.52
151
151

15

15

15

15

15

15

15

15

15
1.49
1.49
1.48
1.47
1.47
1.47
1.46
1.45
1.45
1.45
1.43
1.43
1.42

67

Yes
Yes

Yes

Yes

Yes

Yes

Yes



daf-12
daf-1
akt-1
daf-11
daf-16
daf-7
daf-18
age-1
akt-2
gro-1
daf-28
clk-2
daf-5
T25B9.9
ZK1127.5
K04G2.1
rps-21
eif-3.F
eif-3.D

1.42
1.42
1.42
1.42
1.42
1.42
1.42
1.42
1.42
1.42
1.42
1.42
1.41
1.41

14

14

14

14

14

Yes

Yes

Yes
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