
A single gene network accurately predicts phenotypic
effects of gene perturbation in Caenorhabditis elegans
Insuk Lee1,4, Ben Lehner2–4, Catriona Crombie2, Wendy Wong2, Andrew G Fraser2 & Edward M Marcotte1

The fundamental aim of genetics is to understand how an organism’s phenotype is determined by its genotype, and implicit in this
is predicting how changes in DNA sequence alter phenotypes. A single network covering all the genes of an organism might guide
such predictions down to the level of individual cells and tissues. To validate this approach, we computationally generated a
network covering most C. elegans genes and tested its predictive capacity. Connectivity within this network predicts essentiality,
identifying this relationship as an evolutionarily conserved biological principle. Critically, the network makes tissue-specific
predictions—we accurately identify genes for most systematically assayed loss-of-function phenotypes, which span diverse
cellular and developmental processes. Using the network, we identify 16 genes whose inactivation suppresses defects in the
retinoblastoma tumor suppressor pathway, and we successfully predict that the dystrophin complex modulates EGF signaling.
We conclude that an analogous network for human genes might be similarly predictive and thus facilitate identification of disease
genes and rational therapeutic targets.

The central goal of genetics is to understand how heritable informa-
tion encoded in the genome determines the phenotype of an organ-
ism. In coming decades, the number of individual human genomes
sequenced will grow enormously, and the key emerging problem will
be to correlate identified genomic variation to phenotypic variation in
health and disease. However, our present ability to predict the
outcome of an inherited change in the activity of any single human
gene is negligible. We therefore need pragmatic approaches that use
current biological knowledge to relate genetic change to phenotypic
outcome in multicellular animals.

Probabilistic integrated gene networks, in which linkages between
genes indicate their likelihood of being involved in the same biological
processes, provide such an approach1–6. Developments in functional
genomics, proteomics and comparative genomics now allow genome-
scale assays of different aspects of gene function. Although datasets
from each technique are incomplete and error-prone, they contain
much valuable data. Using statistical methods, one can integrate these
data to generate a more accurate and comprehensive view of gene
function than is contained in any single dataset. Such a network,
comprising the majority of genes, might then guide phenotypic
predictions in varied tissues and developmental contexts.

Integrated networks have proven successful for the study of
unicellular organisms, accurately predicting gene functions3 and
essentiality7,8. However, it is unclear whether these methods may be
extended to studies of multicellular animals, because the networks do

not explicitly reflect multiple cell types, tissues or stages of develop-
ment. Further, although one might achieve high prediction specificity
for small gene networks, retaining this specificity for a network
spanning an entire animal proteome (that is, all protein-encoding
genes) is challenging and unproven. In our studies, we tested whether
it was possible to generate an integrated gene network covering most
genes in an animal and also retain the capacity to predict effects of
gene perturbation in individual tissues in vivo.

We chose to construct a proteome-scale gene network for the model
organism C. elegans. Not only is the worm complex, with many
different cell and tissue types, but the effects of perturbing any gene
(or combination of genes) in vivo can be rapidly investigated using
RNA interference (RNAi). In the worm, one can thus test the ability of
a single gene network to predict both gross phenotypes (for example,
lethality) and tissue-specific phenotypes. Validated systems approaches
for predicting animal gene function might then be applied to human
biology and disease.

In this study, we constructed a genetic network comprising B82%
of predicted C. elegans genes. We show that this network predicts the
effects of perturbing individual genes on the organism’s phenotype,
identifying genes causing specific phenotypes ranging from cell cycle
defects in single embryonic cells to life-span alterations, neuronal
defects, and altered patterning of specific tissues. We illustrate how
such a network can accelerate research by using network-guided
screening to identify genes and interactions for two pathways relevant
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to human disease. We have thus constructed a key resource for gene
function prediction in C. elegans, which should facilitate characteriza-
tion of important processes in this model animal. More broadly, this
study suggests that similar integrative networks in humans may
provide a method for predicting how individual inherited variations
in gene sequence and activity relate to individual phenotypes.

RESULTS
Constructing a proteome-scale gene network for C. elegans
For a network to predict the phenotypic outcome of perturbing any
individual gene, it must include all predicted genes. Previously
described gene networks for C. elegans include only 3–17% of genes
and thus fall short of this goal9–12. Maintaining high accuracy of
functional predictions while increasing coverage to include most genes
is non-trivial, and many methods that work for the strongest linkages
(for example, linkages shared between datasets) fail when coverage is
increased. For yeast, we and others have shown that integrating high-
throughput datasets in a Bayesian framework can produce an accurate
probabilistic network that both covers most genes and makes specific
predictions of gene function and perturbation phenotypes2–4,6. We
thus used this approach in the worm.

We assembled diverse datasets, including DNA microarray mea-
surements of the expression of C. elegans mRNAs (Supplementary
Table 1 online), assays of physical and/or genetic interactions
(Supplementary Table 2 online) among C. elegans10,13, fly14,
human, and yeast proteins, literature-mined C. elegans gene associa-
tions, functional associations of yeast orthologs15 (we term
such conserved functional linkages ‘associalogs’), estimates of the

coinheritance of C. elegans genes across bacterial genomes, and the
operon structures of bacterial and/or archaeal homologs of C. elegans
genes. We analyzed over 20 million experimental observations, and
where necessary, we mapped observations from other eukaryotes to
C. elegans via gene orthology16. Each dataset links genes either
explicitly (for example, through physical and/or genetic interactions)
or by inference (as genes sharing expression profiles tend to be
functionally linked). Because these data are noisy, a naı̈ve union of
these datasets generates a large but error-prone network with poor
predictive capacity. Conversely, each dataset in itself is incomplete, and
although finding overlaps between multiple datasets identifies high-
confidence linkages, it generates a low-coverage network that excludes
much high-quality data. More sophisticated methods are thus
required to build accurate, high-coverage gene networks.

To integrate these datasets, we first estimated how well each dataset
links genes known to share biological functions as determined from
Gene Ontology (GO) annotations; we expressed these estimates as log
likelihood scores (LLS; Fig. 1a and Supplementary Methods online).
These scores are not highly dependent on the use of GO annotations
for quality assessment; other schemes for function annotation (for
example, KEGG) yield similar results. After generating quality scores
for each dataset, we then integrated all datasets into a single network
using a modified Bayesian framework (see Methods). This yielded a
network (Wormnet v1) comprising 384,700 linkages among 16,113
genes (B82% of the worm proteome). Each linkage is not a binary
entity, but instead indicates a probability based on integration of
likelihood scores from individual datasets—some linkages are of high
confidence, others are only weak. We observed up to five lines of
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Figure 1 Construction, accuracy and extent of the C. elegans gene network. (a) Individual functional

genomics datasets were evaluated for their tendencies to link genes sharing Gene Ontology pathway

annotations and then integrated into a composite network (Wormnet v1) of higher accuracy than any

individual dataset, for a total of 384,700 functional linkages covering 16,113 worm proteins (B82% of
the proteome). The x axis indicates the number of functional linkages provided by the plotted data; the

y axis indicates cumulative accuracy of datasets, measured as the log likelihood of linked genes to share

Gene Ontology annotations, tested using 0.632 bootstrapping (Supplementary Methods) and plotted for

bins of 2,000 linkages each. Evidence codes: CC, co-citation; CX, co-expression; DM, fly interolog;

GN, gene neighbor; GT, genetic interaction; HS, human interolog; PG, phylogenetic profiles; SC, yeast

associalog; WI, worm protein interactome version 5. Note that the x axis is on a log scale. (b) The final

contributions to the Wormnet core network, which covers 113,829 linkages and 12,357 genes (B63%

of the proteome), are shown in the pie chart with linkages contributed in the plotted proportions

(Supplementary Table 3 online) from the different datasets (indicated with the same color scheme as a,

except that here orange indicates that the interaction is predicted by more than one dataset). (c) The core

set of Wormnet increases coverage of the worm proteome by 445%, and the complete Wormnet increases

coverage by B65%, over four earlier C. elegans gene networks9–12. (d) A Venn diagram illustrates the

comparison of the Wormnet core (red circle) to the previous two largest, computationally derived C. elegans

gene networks11,12, measuring accuracy (TP) as the percentage of linked and annotated gene pairs sharing

KEGG pathway annotations. Linkages common to all sets are 98% accurate, those shared between Wormnet and one other set are 90% or 94% accurate,

and the B104,000 linkages unique to Wormnet are still 49% accurate. Similar results are seen in a comparison to the other two previous C. elegans gene

networks9,10 (data not shown).
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evidence per linkage; the number of lines of evidence correlates well
with increasing LLS (Supplementary Methods). Applying an empiri-
cal cut-off to the complete network yields a higher confidence core
network comprising 113,829 linkages for 12,357 worm genes (B63%
of the proteome). Figure 1b indicates the relative contributions of
each dataset to the core network.

The core network is substantially larger than earlier C. elegans
functional networks9–12, contributing 102,088 previously unidentified
linkages and covering an additional B45% of the C. elegans proteome
(Fig. 1c). This increased coverage does not come at the expense of
accuracy: Wormnet has a comparable or better false-positive rate than
the previous smaller networks, as assessed by the recapitulation of
known functional relationships in the GO and KEGG databases
(Fig. 1d and Supplementary Methods). The network extends con-
siderably beyond previously described associations: 83,946 links in the
core network (74%) neither derive from literature-mined relationships
nor overlap with known Gene Ontology pathway relationships.
Notably, the core network does not have a scale-free node degree
distribution, but is better fit by a power-law for genes with lower
connectivity and an exponential decay for genes above a characteristic
threshold (Supplementary Methods).

A key goal of this network is that it should predict the phenotypic
consequences of perturbing genes. We thus tested the capacity of this
network to predict loss-of-function phenotypes of different levels of
specificity. We first tested whether the network could predict gene
essentiality. We next tested whether we could accurately identify genes
with diverse functions ascertained through previous genome-wide
RNAi screens. Finally, we tested whether we could identify previously
unknown genes that modulate pathways relevant to human disease
and then experimentally validate these predictions. In this way, we
validate the ability of this single network to make accurate, specific
predictions about the outcome of gene perturbations on the pheno-
type of the entire organism.

Network connectivity predicts essentiality in animals
We first examined whether the core network could predict gene
essentiality. Although gene essentiality is a general prediction, it is
nonetheless important—for example, accurately predicting mouse
gene essentiality would influence the targeting strategy for major
knockout programs. Similarly, there are thousands of potential drug

targets in the ‘druggable genome’—knowing which targets are essen-
tial could refine the search space.

The number of interaction partners a yeast protein has correlates
with the tendency of the gene to be essential7. It was recently suggested
that this relationship might not hold for animal gene networks17,
although a similar trend was observed for C. elegans protein-DNA
interactions18. We observed a robust correlation between gene con-
nectivity in the functional network and the frequency of nonviable
RNAi phenotypes19 (Spearman rank correlation rs ¼ 0.87; Fig. 2a).
This trend is not simply a consequence of yeast-derived linkages: a
worm network with all yeast-derived linkages omitted also shows a
strong correlation (rs ¼ 0.86; Fig. 2b), and the relationship is
statistically significant (P o 0.01) even after removing all genes with
yeast orthologs from the network (rs ¼ 0.52; Fig. 2b inset). Thus, we
can predict the probability that a gene has a non-viable RNAi
phenotype using only network connectivity.

We further tested whether this relationship between connectivity
and essentiality is likely to hold for mammalian gene networks. We
constructed a mouse gene network using linkages from Wormnet and
the orthology relationships between mouse and worm genes.
Although this ‘murinized’ network did not contain any data from
the mouse in forming the gene linkages, we found that there was again
a strong relationship between the connectivity of a gene and the
probability of embryonic or perinatal lethality in knockout and/or
gene-disrupted mice (rs ¼ 0.72, Fig. 2c). This finding demonstrates
that network connectivity predicts essentiality from yeast to animals
and suggests that this likely represents a fundamental principle
of biology.

A single network can predict diverse phenotypes
Genes that are tightly linked in probabilistic networks of the kind we
have constructed here are very likely to be involved in the same
biological process (Fig. 1); thus, genes linked in Wormnet are likely to
share similar loss-of-function phenotypes. The key to the success of
this ‘guilt by association’ approach20,21 is in the combined high quality
and high coverage of the linkages.

To test the capability of Wormnet to identify new genes sharing
loss-of-function phenotypes with previously studied genes, we first
used data deriving from genome-wide RNAi screens. We did not use
linkages deriving from any of these screens to construct Wormnet.
Forty-three RNAi phenotypes have been screened on a genome-wide
scale. These phenotypes range from gross (for example, sterility,
lethality and growth defects) to specific, such as those affecting single
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Figure 2 Network topology-based prediction of gene essentiality. (a) The

connectivity of a gene, measured for each gene as the normalized sum of log

likelihood scores of its linkages, is highly correlated with the tendency for

the gene to be essential. All genes in Wormnet were sorted by connectivity

and binned into successive bins of 200 genes; the mean connectivity and

frequency of tested genes conferring nonviable RNAi phenotypes19 were

then calculated for each bin (bins are plotted as filled circles; same bin size

for plots a–c). (b) The correlation is not a simple consequence of including

yeast-derived linkages, as a C. elegans network with all yeast-derived

linkages removed shows a similar trend. Moreover, the trend is still evident

and significant (P o 0.01) even after removal of all genes with yeast

orthologs (b, inset). (c) This trend is evolutionarily conserved across

animals—connectivity in a ‘murinized’ C. elegans gene network (the subset

of 6,924 genes with mouse orthologs16) correlates with the tendency for the

orthologous mouse genes to be essential (measured as the frequency of
tested mouse genes whose knockouts and/or gene disruptions result in

prenatal or perinatal mortality49). Here, connectivity is measured as the

normalized number of linkages per gene.
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cellular processes (for example, mismatch repair defects, apoptosis) or
single tissues (for example, vulva development). For each genome-
wide RNAi screen, we wanted to assess how tightly linked the hits were
to each other relative to other genes. If genes that share any given loss-
of-function phenotype associated tightly together, this would indicate
that Wormnet has the capability to identify additional genes sharing
loss-of-function phenotypes with previously studied genes.

To examine how tightly genes with a given loss-of-function phe-
notype were associated, we calculated how closely every gene in the
complete network was linked to the set of previously identified genes
(the ‘seed’ set) conferring that phenotype (see Methods). We found
that the network strongly predicts genes with 29 of the 43 phenotypes
reported from genome-wide screens (Fig. 3 and Supplementary
Figure 1); a further 10 screens can be reasonably predicted (Supple-
mentary Methods). Previously described networks are not as capable
at identifying the associations between the majority of these genes
(Supplementary Methods), primarily because of lack of proteome
coverage (3–17%, compared to 82% in Wormnet).

In the cases where we failed to make strong predictions, we
anticipate three causes of failure. First, the screen itself could have
been noisy, thus impacting predictability. For example, of two iden-
tical RNAi screens for longevity, one is highly predictable22 and the
other is only moderately so23, suggesting differences in screens rather
than inherent phenotype predictability. Second, the phenotype may be
too broad; for example, viable post-embryonic phenotype is a weakly
predicted, broad category covering several phenotypes, many of which
are strongly predictable when taken in isolation (clear, small, patchy,
body morphology defect, protruding vulva). Finally, the network may
be still incomplete and lacking informative data about certain bio-
logical pathways—this might be the case for poor predictions of genes
that regulate fat content, which may require data more directly
relevant to metabolism. As this informatic approach is easily extend-
able, such datasets can be incorporated in future versions.

Wormnet’s predictive power is evident in the case of genes regulat-
ing lifespan. Three independent RNAi screens have been done for
genes affecting lifespan, allowing us to assess validation rates of
predictions made using data from an individual screen. A previous
study reported 29 genes that extend lifespan when inhibited22. Of the
50 and 200 new genes most highly connected to these in Wormnet
(Supplementary Methods), 10 (20%) and 21 (10.5%) are validated in
the independent RNAi screens23,24. These hit rates represent an 8.3- to
100-fold and a 4.4- to 52.5-fold enrichment compared to the hit rates
of the three genomic screens. Wormnet-predicted genes include some
of the most potent effectors of longevity identified, such as egl-45,

shown to increase lifespan by 55% following RNAi24. Thus, Wormnet
facilitates the identification of genes required even for complex
phenotypes, such as the regulation of lifespan.

Taken together, the accurately predicted phenotypes in Figure 3 and
Supplementary Figure 1 represent diverse cellular, developmental and
physiological processes. In total, we have shown that we can predict
phenotypes for genes specifically affecting the following individual
tissues: oocyte, single cell embryo, single lineage in embryo (P lineage),
cuticle and hypodermal cells, vulva, neurons, gut, germline and
excretory cell. These results demonstrate that a single gene network
can predict effects of gene perturbation for diverse aspects of animal
biology, and that it is not essential to construct a specialized subnet-
work for each particular process.

Network guided screening: the retinoblastoma pathway
We show above that genes sharing loss-of-function phenotypes are
tightly linked in the network. Thus, given previously studied genes
known to share loss-of-function phenotypes, one can query the
network and identify other genes that are tightly linked to these
known genes and that are thus likely to have the same loss-of-function
phenotype. This approach, which we term ‘network guided screening’,
should be particularly useful for complex systems such as humans,
where in vivo genome-wide screens are not possible. To illustrate this
approach, we focused on two disease relevant pathways that are highly
conserved between worm and human and for which there is limited
prior knowledge.

We first used Wormnet to identify genes that function in the
retinoblastoma tumor suppressor pathway. In C. elegans, the
retinoblastoma–synMuv B pathway acts genetically redundantly
with the synMuv A pathway to repress development of the hermaph-
rodite vulva25. The C. elegans vulva consists of 22 cells that derive
entirely from three vulval precursor cells (VPCs). However, in
worms defective in both the synMuv A and synMuv B pathways, an
additional three cells can be induced to form ectopic vulvae
(the synthetic multivulva or ‘synMuv’ phenotype; Fig. 4a). Vulva
development is therefore controlled by gene interactions in a small
number of cells and presents a good example to test the capability of a
proteome-scale animal network to predict precise developmental
functions for genes.

Recently, six genes were identified that encode suppressors of the
synMuv pathway26,27; thus, we used these six genes to predict addi-
tional synMuv suppressor genes. The six genes interacted with 62 and
142 genes in the core and non-core of Wormnet, respectively, and we
used RNAi to test whether targeting these candidate genes suppressed

Figure 3 Network-based prediction of loss-of-

function phenotypes. Genes conferring a specific

RNAi phenotype can be predicted on the basis of

connectivity to other genes conferring the

phenotype (the ‘seed’ set), as shown here by

leave-one-out prediction of genes giving rise to

each of the 29 indicated RNAi phenotypes (also

see Supplementary Figure 1). For a given

phenotype, each gene in the worm proteome was

rank-ordered by the sum of its linkage log

likelihood scores to the seed set of genes already

known to show that phenotype (omitting each

seed gene from the seed set for purposes of

evaluation). High-scoring genes are therefore

most tightly connected to the seed set and are the most likely candidates to share that phenotype. This trend is evident in a ROC plot in which we measure
recovery of genes with the given phenotype as a function of rank, calculating the true-positive prediction rate (sensitivity; TP/(TP+FN)) versus the false-

positive prediction rate (1–specificity; FP/(FP+TN)).
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the multivulva phenotype of a lin-15A;B strain. We found that
RNAi against 10 of 50 tested core interactors (20%) and 6 of 124
non-core interactors (5%) appreciably suppressed this phenotype
(Fig. 4a,b). In contrast, in a large-scale screen, inactivation of
0.9% (17 of 1,748) of genes suppressed the lin-15A;B synMuv
phenotype (data not shown). Predictions arising from network
connections are thus 21-fold and fivefold better than those expected
by chance in the core and non-core networks, respectively. Given
the false-negative rate of RNAi, this validation rate is consistent
with the true-positive rate calculated in Figure 1 using functional
annotations. The genes identified in the
large-scale screen that were not predicted
by Wormnet using the six previously
known genes are still highly clustered
in Wormnet (area under ROC curve,
AUC ¼ 0.845), but are not connected to
the seed genes. Most of these genes encode
proteins involved in a separate pathway
that can affect the retinoblastoma-synMuv
phenotype (the EGF pathway).

The interactions that predicted the newly
identified retinoblastoma-synMuv pathway
suppressors derived from diverse datasets
from multiple organisms (Fig. 4b): only 3
of these 16 interactions were supported
by known physical and/or genetic inter-
actions in C. elegans (Table 1), highlighting
the power of integrating data across species.
Further, only two of these interactions were
predicted in previously published C. elegans
networks9–12, underlining the strength of this
more comprehensive network. Finally, we
compared our predicted results to those of
a recent genome-wide RNAi screen for syn-
Muv suppressors28. This study reported the
identity of 26 suppressors, and we correctly
predicted 27% of these. Again, the genes that
were not predicted by Wormnet are clustered

in the network (AUC ¼ 0.737), but they are not directly attached to
the six previously known suppressors. Moreover, 56% of the suppres-
sors that we newly identified via prediction were not reported in the
genome-wide screen. Thus, although both network-based prediction
and direct genome-wide screening show false negatives, the signal from
prediction (16 positives from 174 genes screened) is far stronger than
that from unbiased screening, dramatically reducing candidates for
experimental validation. This is likely to be a key benefit in animals
where genome-wide screens in vivo are not currently feasible.

We note that most of the genes that we newly identified as
suppressors of the retinoblastoma-synMuv pathway have human
orthologs (Table 1), and it is possible that inactivation of these
orthologs may revert the effects of losing this key tumor suppressor,
thereby defining potential targets for pharmaceutical intervention or
prevention of human retinoblastoma-linked tumors.

The dystrophin complex modulates EGF-Ras-MAPK signaling
To further illustrate the predictive power of Wormnet, we tested
the functional significance of a predicted connection between the
dystrophin associated protein complex (DAPC), components of which
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Figure 4 Identification of genes that antagonize the retinoblastoma-synMuv

pathway. (a) Inactivation of both the synMuv A and synMuv B pathways in

the strain lin-15A;B(n765) results in the induction of ectopic vulvae

(synMuv phenotype, arrows). RNAi against genes that antagonize this

pathway (such as the gene R08C7.3) can suppress the induction of these

ectopic vulvae. (b) RNAi against 10 of 50 core and 6 of 124 non-core

interaction partners (clear nodes) of the five known suppressors of the

synMuv pathway (blue nodes) could also suppress the synMuv phenotype of

lin-15A;B(n765). Interactions between these genes in the core of Wormnet

are shown as solid edges, and non-core interactions are shown as dashed

edges. The dataset used to predict each interaction is indicated by the color

of each edge, using the same color-scheme as in Figure 1a.

Table 1 Suppression of the synMuv phenotype by RNAi against each of the newly identified

genes antagonizing the retinoblastoma-synMuv pathway

Gene Human ortholog(s) Suppression of lin-15(n765) (%) n Evidence

Y105E8A.17 DMAP1 88 81 SC, HS, DM

mrg-1 MORF4L1/L2 97 128 HS, WI

mes-3 - 22 150 CC

mes-6 ?EED 59 69 CC, GT

set-2 Q9UPS6, SET1A 5 83 CC, GT

spr-1 RCOR1/2/3 13 40 HS

C14B1.4 WDR5/5B 39 193 HS

C17E4.6 VPS72 13 246 HS

lin-59 ?ASH1L 48 87 CX

R08C7.3 ENSG00000177907, 96 107 SC

SUB1

mpk-1 MAPK1/3 29 21 SC

T13F2.2 H2AFZ/H2AFV, 16 80 CX

ENSG00000187025

C28H8.1 BCL7A/B/C 3 192 CX

isw-1 SMARCA1/5 38 130 CX, SC

C08B11.6 ACTR6 69 159 SC

ccr-4 CNOT6/6L 4 204 SC

Control 0 531

Core interactions are shaded. Human orthologs were identified using INPARANOID16, except for the genes mes-6 and
lin-59, which do not have clear human orthologs and where the best BLAST hits as defined in WormBase are indicated
with a question mark (?). Evidence codes are as described in Figure 1.
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are defective in muscular dystrophies, and the EGF signaling pathway,
which is frequently defective in cancers.

Inactivation of DAPC genes in C. elegans (that is, the genes
dys-1 (dystrophin), dyb-1 (dystrobrevin), dgn-1 (dystrogylcan),
stn-1 (syntrophin) and sgn-1 (sarcoglycan)) results in a mild
hyperactivity, probably from abnormal neuromuscular junction
function29. We found that two DAPC genes were directly connected
by three interactions to components of the EGF-Ras-MAPK
pathway (Fig. 5a); these interactions predict a possible functional
interaction between the DAPC and the EGF-Ras-MAPK pathway.
None of the DAPC genes have any predicted interactions in previous
C. elegans networks9–12.

In C. elegans, the best characterized function of EGF signaling is as
an inductive signal during vulval development30; therefore, we tested
whether inactivating DAPC components modulated EGF signaling in
the vulva. Inactivation of all three tested DAPC genes (dys-1, dyb-1
and stn-1) strongly suppressed induction of ectopic vulvae by an
activated Ras/let-60 gene (Fig. 5b), suggesting that the DAPC posi-
tively regulates EGF signaling during vulva induction. Consistent with
this result, dys-1 mutations enhanced the ‘rod-like’ larval lethal
phenotype resulting from inhibition of the Ras/let-60 signal required
to specify development of the excretory cell31 (Fig. 5c,d). Hence we
conclude that in C. elegans the DAPC positively regulates EGF-Ras-
MAPK signaling both during vulva induction in larvae and excretory
cell development in embryogenesis.

DAPC regulation of EGF signaling in C. elegans suggests that
misregulation of EGF-Ras-MAPK signaling may be important for
muscular dystrophy pathology. In support of this, Ras activity in rat
muscle preparations is reduced after depleting b-dystroglycan, sug-
gesting the DAPC-Ras functional coupling also exists in vertebrate
muscle32. Therefore, the EGF-Ras-MAPK pathway may represent a
therapeutic target in muscular dystrophy.

We have thus shown that we can use a single network covering most
predicted C. elegans genes to predict genes affecting differentiation of
three vulval precursor cells (for the synMuv suppressor genes), or of
the single excretory cell (for the DAPC-EGF connection). Further-
more, we required only six query genes for the SynMuv suppressors
and five for the DAPC complex. This is similar in scale to the amount
of knowledge of many human congenital diseases.

DISCUSSION
Although construction of single, organism-wide, probabilistic gene
networks from existing data has been successful for unicellular
organisms, it was unclear that a single network could accurately
predict gene function in an animal. To test this, we used existing
data to generate a single network including most C. elegans genes. We
demonstrated that the network predicts diverse cellular, developmen-
tal and physiological processes with great specificity. We then applied
this network to newly identify genes interacting with key pathways
related to human disease and to successfully predict functional
connections between pathways. Thus a single gene network covering
the majority of genes can make accurate, specific predictions about
effects of perturbing individual genes in varied developmental con-
texts, tissues and genetic backgrounds.

We note that the current network is still incomplete: it covers
480% of genes, but it is certainly missing many functional linkages
between them. Additional datasets will help, such as higher coverage
physical interaction maps in the worm10. Transcriptional analyses of
individual tissues and mutant strains should also increase predictive
accuracy for specific tissues. We intend to release new versions of
Wormnet as such data become available.

Several considerations should be noted regarding the possibility that
a similar approach may be successful in humans. First, although few of
the network datasets derive from measurements made in specific
tissues, we can nonetheless predict effects of gene perturbation on indi-
vidual tissues. Second, the types and scales of C. elegans data are already
available for humans. The only major worm datasets not available for
humans are genome-scale RNAi screens, which directly measure effects
of gene perturbation. However, we omitted these from Wormnet,
reserving these data for validating the network’s predictive capacity.

Finally, gene networks such as Wormnet identify genes likely to
share functions, but they do not identify these functions directly nor
indicate positive or negative regulation of a process, as activators and
repressors frequently cluster together. We cannot predict a priori the
phenotypic effect of gene perturbation without knowing results for
other genes. We therefore need a query set of genes with known
functions or loss-of-function phenotypes to identify other candidate
genes. For example, for any given human genetic disease, we
would need to know some genes associated with that disease before
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Figure 5 Verifying a functional interaction between the dystrophin associated protein complex (DAPC) and EGF-Ras-MAPK signaling. (a) Network
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according to evidence codes as in Figure 4. (b) Inactivation of DAPC components by RNAi can suppress the induction of ectopic vulvae by a gain-of-function

Ras/let-60 gene. The percentage of wild-type animals (those without a multivulva phenotype) is shown for each treatment. Control RNAi experiments used a

bacterial feeding clone that does not target an expressed C. elegans gene (Ahringer library clone Y95B8A_84.g). (c) Mutations in the dys-1 gene enhance the

larval lethal phenotype of let-60(RNAi). RNAi against let-60 results in larval lethality in 22% of progeny in the RNAi-hypersensitive strain rrf-3(pk1426),

but in 53% of progeny of the dys-1(cx18) strain. Larvae die with a characteristic rod-like phenotype due to absence of a functional excretory cell31.

(d) Representative photos of the data presented in c illustrating the strongly enhanced penetrance of the ‘rod-like’ larval lethality (arrows) after RNAi against

let-60 in the dys-1 strain. Error bars in b and c, s.d.
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predicting new candidates. For both the retinoblastoma and the DAPC
genes, we validated predictions made using less than six query genes,
similar to the number known to be mutated in many diseases
suggesting that this is a realistic prospect.

This resource is accessible to the community through a website that
allows any researcher with genes of interest to identify interacting
genes, rank-ordered by association strength to the query list (see URLs
section in Methods). Just as BLAST33 allows researchers to identify
genes related by sequence to genes of interest, each scored for
confidence, so probabilistic networks allow researchers to identify
genes related functionally to genes of interest. Neither BLAST nor gene
networks offer guarantees—the top BLAST hits are not necessarily
functional orthologs of a gene, and the closest genes in a network may
not function in the same process. They are, however, the most likely
candidates based on extensive functional data.

In summary, we have demonstrated that it is possible to construct a
single network that both covers the majority of genes in C. elegans and
that predicts which genes are important for the majority of system-
atically tested phenotypes in this animal. A similar network for
humans might therefore facilitate the identification of genes important
for diverse processes and diseases.

METHODS
Network construction and evaluation. Computational methods are described

in full in the Supplementary Methods. We analyzed several datasets. In July

2005, we downloaded expression data from the Stanford Microarray Database34,

identified sets of DNA microarray experiments that showed significant correla-

tion between the extent of mRNA co-expression and functional associations

between genes, and selected 6 sets encompassing 220 DNA microarray experi-

ments35–39 and 635 additional array experiments previously published11. Within

each microarray set, we filtered out genes out that failed to show significant

(typically 41.2-fold) expression changes in some minimal number of experi-

ments, optimizing this value for each expression dataset by recall-precision ana-

lysis. Gene pairs were then analyzed for co-expression as previously described2.

We also downloaded genome-wide yeast two-hybrid interactions between

C. elegans proteins10 and the associated literature-derived protein-protein

interactions from the Worm Interactome database10. Interactions of different

confidence (literature, scaffold, core1, core2 and noncore) were benchmarked

separately. Genetic interactions (for B800 genes and B4,000 interactions)

were included from WormBase13, derived from 41,000 primary publications.

Human protein interactions were collected from existing literature-derived

databases40–44 as well as large-scale yeast two-hybrid analysis45, then transferred

by orthology to C. elegans via orthologs defined using INPARANOID16.

Additional protein interactions were derived in this manner from fly yeast

two-hybrid interactions14, as well as by transferring functional interactions

from the yeast functional gene network15. Interactions were assigned confidence

scores before integration (Supplementary Methods).

We derived comparative genomics linkages from the analysis of 133 genomes

(117 bacteria and 16 archaea) using the methods of phylogenetic profiling (with

modifications in the Supplementary Methods) and gene neighbors, calculated

as previously described46,1.

We derived linkages from co-citation of C. elegans gene names (perfect

matches to either the systematic names or common names) in a set of 7,732

abstracts, downloaded on December 2004, containing the word ‘elegans’. Gene

pairs were scored as previously described2.

We used two primary reference pathway sets to evaluate and integrate

datasets. The C. elegans Gene Ontology (GO) annotation from WormBase13

(downloaded March 2005) served as the principal reference set for training and

benchmarking the network. As gold-standard positive functional linkages, we

selected genes sharing GO ‘‘biological process’’ annotation terms from levels 2

through 10 of the GO hierarchy. We excluded five terms annotating an excessive

number of genes in order to reduce functional bias in the benchmark set

(Supplementary Methods): embryonic development, positive regulation of

growth rate, growth, locomotory behavior and regulation of transcription

(DNA dependent). As gold-standard negative linkages, we selected pairs of

genes from this set that did not share annotation terms. A second set of

functional annotation was derived from KEGG database47 annotations (down-

loaded November 2005; we excluded three annotations accounting for 440%

of the linkages: oxidative phosphorylation, purine metabolism and ribosome).

In all, there were 786,056 gene pairs sharing annotation from the GO reference

set (available in the Supplementary Data File), and 9,406 from KEGG, with

5,069 pairs shared between the two reference sets. An additional test set (KEGG

minus GO) was created by removing all GO pairs from the KEGG set. Other

tests of network accuracy are described in the Supplementary Methods.

We carried out integration and benchmarking of datasets essentially as

previously described2, measuring the linkages derived from each dataset for

their enrichment for gold standard positive gene pairs relative to negative gene

pairs using a log likelihood criterion, evaluated as a function of the dataset-

specific confidence scores associated with the linkages (for example, correlation

coefficient between mRNA expression vectors or mutual information between

phylogenetic profiles). To obtain accurate estimates of dataset accuracy, we

employed 0.632 bootstrapping48 for all log likelihood evaluations. Linkages

from each dataset were then combined using a modified naı̈ve Bayes integra-

tion, accounting for dataset correlation using an empirically optimized weight-

ing parameter15. A summary of all linkages in the full Wormnet v1.0 network is

available in the Supplementary Data File online. Previous work on analogous

networks in yeast2 suggests that a cut-off of 1.5 as a likelihood score,

corresponding to a minimum B60% accuracy for individual linkages, provides

a high quality network that makes accurate predictions about gene function

while maintaining as high coverage as possible. We therefore used this

empirically determined cut-off to define the ‘core’ network of higher confidence

interactions. Additional tests of network clustering, topology and functional

coherence are described in the Supplementary Methods.

Predicting gene perturbation phenotypes. For the prediction of essential

genes, we obtained RNAi phenotype profiles from WormBase (April 2005).

These included profiles for 15,824 worm genes (B80% of worm proteome). Of

these, 2,349 genes (B15%) show some phenotypic change during worm

development following RNAi knockdown. We used the RNAi phenotype

profiles and measures of network connectivity for the 15,824 worm genes for

analysis of essential genes. Genes conferring Emb (embryonic lethal), Ste

(sterile), Lvl (larval lethal), Stp (sterile progeny), or Adl (adult lethal) pheno-

types were considered essential. For analysis of essential mouse genes, we

transferred linkages between C. elegans genes to pairs of mouse genes according

to orthology derived using INPARANOID16. We considered only the 6,924

mouse proteins that exist in the murinized Wormnet. Here, ‘essential’ is defined

as genes whose disruption causes embryonic or perinatal lethality in mice49.

For the prediction of phenotypes from large-scale RNAi screens, we collected

results of 43 genome-wide RNAi phenotypic screens from 24 publications,

listed in the Supplementary Methods. For each phenotype, positive examples

are defined as genes known to give rise to the phenotype (the ‘seed set’), and

negative examples are defined as all other genes screened in that assay. We

evaluated the prediction of each phenotype using a leave-one-out approach

(that is, each gene in the seed set was omitted from the set for the purposes of

evaluating it): each gene in the proteome was rank ordered by the sum of its log

likelihood scores to the seed set of genes known to show that phenotype, with

high-scoring genes most likely to share the phenotype. We then measured the

recovery of genes with the given phenotype, calculating true-positive rate

(sensitivity, TP/(TP+FN)) and false-positive rate (1–specificity, FP/(FP+TN))

as a function of rank, evaluating performance using receiver operating

characteristic (ROC) analysis. For these analyses, we employed the full

Wormnet v1 network, spanning 82% of the proteome, so that we might

maximally recover genes with each phenotype. The probabilistic scoring of the

linkages simplifies using the entire network—lower confidence linkages still

often provide legitimate functional information but are appropriately weighted

by confidence when calculating the sum of log likelihood scores to the seed set.

RNAi feeding experiments. Suppression of synMuv phenotype. RNAi feeding

experiments were done in 12-well agar plates using a previously described

protocol19. Each selected bacterial clone from the Ahringer RNAi feeding

library19 was grown overnight in 2TY with 100 mg/ml ampicillin and spotted

onto every well of a 12-well plate (one complete plate per RNAi feeding clone).
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Mixed stage 3 and 4 (L3/4) larval MT8189 lin-15A;B(n765) worms were

obtained by bleaching adults and incubating at 20 1C for 48 h on OP50 seeded

plates. We added approximately ten L3/4 worms to each well of the first column

(‘well 0’) of each 12-well RNAi feeding plate, and the plates incubated at 16 1C.

After three days a single adult worm from each well 0 was transferred into each

of the other wells of the RNAi feeding plates and allowed to lay eggs for 24 h at

20 1C before being removed. Progeny were scored for the presence of multiple

vulvae after a further 3 to 4 days at 20 1C. The Supplementary Methods list

tested genes.

Suppression of let-60(n1046) multivulva phenotype. We carried out RNAi feeding

experiments exactly as described for the SynMuv suppressor assay, except that

we grew MT2124 let-60(n1046) worms continuously at 20 1C and transferred

adults after two days. All experiments were done in triplicate.

let-60(n1046) synthetic larval lethality. To assay the larval lethal phenotype of

RNAi targeting let-60, we carried out RNAi feeding experiments in liquid

culture as previously described50 adding B10 L1 stage worms to 40 ml of

bacterial RNAi feeding clones and counting the number of viable and ‘rod-like’

larval lethal progeny after 4 d incubation at 20 1C. We used the RNAi

hypersensitive strain NL2099 rrf-3(pk1426) and LS292 dys-1(cx18). Four repeats

were done per strain.

URLs. Wormnet, http://www.functionalnet.org/wormnet.

Note: Supplementary information is available on the Nature Genetics website.
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