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The human protein interaction network will offer global insights into the molecular organization of
cells and provide a framework for modeling human disease, but the network’s large scale demands
new approaches. We report a set of 7000 physical associations among human proteins inferred
from indirect evidence: the comparison of human mRNA co-expression patterns with those of
orthologous genes in five other eukaryotes, which we demonstrate identifies proteins in the same
physical complexes. To evaluate the accuracy of the predicted physical associations, we apply
quantitative mass spectrometry shotgun proteomics to measure elution profiles of 3013 human
proteins during native biochemical fractionation, demonstrating systematically that putative
interaction partners tend to co-sediment. We further validate uncharacterized proteins implicated
by the associations in ribosome biogenesis, including WBSCR20C, associated with Williams–Beu-
ren syndrome. This meta-analysis therefore exploits non-protein-based data, but successfully
predicts associations, including 5589 novel human physical protein associations, with measured
accuracies of 54±10%, comparable to direct large-scale interaction assays. The new associations’
derivation from conserved in vivo phenomena argues strongly for their biological relevance.
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Introduction

Although considerable progress has been made in mapping the
protein interaction network of yeast (Ito et al, 2000, 2001; Uetz
et al, 2000; Ho et al, 2002; Gavin et al, 2006; Krogan et al,
2006), only minimal progress has been made on the interac-
tion networks of higher eukaryotes, due primarily to their
scale: for the B20 000–25 000 human proteins, we expect a
network of roughly 1–400 000 interactions (Hart et al, 2006).
Among the few methods scaleable to this size, the yeast two-
hybrid assay has proven the most successful, with maps of
B20 000 interactions in fly (Giot et al, 2003), B4000 in worm
(Li et al, 2004), and more recently, assays of B2800 and
B3200 human protein interactions (Rual et al, 2005; Stelzl
et al, 2005). Direct mapping of protein complexes by mass
spectrometry has also contributed another B5000 interactions
(Ewing et al, 2007). After including previously known human

protein interactions (Bader et al, 2003; Lehner and Fraser,
2004; Peri et al, 2004; Joshi-Tope et al, 2005; Ramani et al,
2005), the human protein interaction map is currently perhaps
10–30% complete (Hart et al, 2006). It is therefore important to
identify and employ methods for discovering interacting
proteins without exhaustive experimental measurement of
all pairs of proteins under each relevant condition or assay.

Proteins are evolved to interact under specific conditions in
the cell, with the cell correspondingly optimized to facilitate
these events, e.g. by expressing mRNAs before proteins are
required, coordinating the expression of interacting partners,
directing proteins to appropriate locations for their interac-
tions, and so on. In this way, in vivo protein interactions are
accompanied by corollary events that can be used to identify
biologically relevant physical interaction partners.

We took advantage of two such corollary data types, the
tendency for interacting proteins to have correlated mRNA
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expression patterns and the evolutionary conservation of such
patterns, to identify new human protein interactions. It is well
established that genes whose mRNA expression patterns are
correlated across many diverse conditions can often be
inferred to ‘work together’, i.e. to be functionally coupled
(Eisen et al, 1998; Marcotte et al, 1999; Stuart et al, 2003; Lee
et al, 2004a; Segal et al, 2004). Analyses of co-expression
patterns of orthologous genes have shown that the conserved
correlation in expression can also be used to transfer
functional information across species (Teichmann and Babu,
2002; Stuart et al, 2003; van Noort et al, 2003; Bergmann et al,
2004; Snel et al, 2004). Transcriptional co-expression patterns
have proved useful for inferring physical protein interactions
(e.g. Deane et al, 2002; Jansen et al, 2003), with strongly co-
expressed mRNAs more likely to indicate long-lived interac-
tions (Ge et al, 2001; Jansen et al, 2002; Simonis et al, 2006). In
general, we do not expect transcriptional data to distinguish
between direct protein binding and membership in the same
protein complex, and we term all such cases physically
associated proteins.

To exploit these trends, we applied a supervised algorithm to
discover physical associations among human proteins based
upon the co-expression of their mRNAs and that of their
orthologs in five organisms (the mustard plant Arabidopsis
thaliana, the mouse Mus musculus, the fly Drosophila
melanogaster, the nematode Caenorhabditis elegans, and the
yeast Saccharomyces cerevisiae). By this approach, we mapped
7000 predicted human protein physical associations, of which
5589 are new to this analysis.

Results

Predicting physically associated proteins from
patterns of conserved co-expression

Figure 1 illustrates the overall method. We first identified
orthologs for human genes in five other organisms using the
InParanoid algorithm (Remm et al, 2001). We then compared
the correlation in mRNA expression of each pair of human
genes with the correlations in expression of each of their
corresponding ortholog pairs from five organisms, in all
calculating mRNA expression correlations for 5 708 925 hu-
man gene pairs on the basis of 3977 DNA microarrays. After
removing 105140 gene pairs likely to cross-hybridize on the
microarrays (see Materials and methods) and filtering pairs
with nonsignificant correlations, we employed a supervised
algorithm on these data to identify those patterns of conserved
co-expression (CCE) diagnostic of physical protein associa-
tions, based upon the correlations observed for known protein
interactions versus random protein pairs. By searching for
additional gene pairs exhibiting these patterns, we identified
new associations.

Figure 2 plots the derivation of the relationship between CCE
and the tendency to be in the same physical complex, relying in
this case on the comparison of human and C. elegans mRNA
expression data. Briefly, the distribution of mRNA co-expres-
sion relationships was measured for 1769 gene pairs whose
corresponding proteins are known to physically associate
(Ramani et al, 2005), serving as positive training examples
(Figure 2A); these 1769 pairs represent the subset of known

human protein associations in the training set that also occur
in the human–worm co-expression data sets. Likewise, the
distribution was measured for 642 295 gene pairs that are in
the physical interaction training set but are not known to
physically associate, serving as a negative training set
(Figure 2B). Therefore, the log ratio of these two plots,
corrected by prior expectation, represents the log likelihood for
protein pairs to physically associate given any particular
pattern of co-expression conservation (Figure 2C):

LLR ¼ ln
PðIjDÞ=Pð� I=DÞ

PðIÞ=Pð� IÞ

� �

where P(I|D) and P(BI|D) are the frequencies of positive (I)
and negative (BI) training associations observed in the data
set (D), respectively, while P(I) and P(BI) represent the overall
frequencies of positive and negative training associations,
respectively. This score indicates how likely two proteins are
to physically associate given their specific mRNA co-expres-
sion conservation in these data. The training set includes both
direct interactions and protein pairs belonging to the same
complex; we therefore consider this approach to support the
more general case, i.e. proteins belonging to the same complex
whether or not directly interacting. Note that the highest
scores do not necessarily occur in the extreme top right corner
of Figure 2C; lower counts of both positive and negative
examples in the extreme corner, as well as filtration of highly
correlated gene pairs where they may suffer from DNA
microarray cross-hybridization (see Materials and methods),
results in the highest scores occurring at correlation coeffi-
cients less than one.

We similarly analyzed co-expression patterns of human
gene pairs with orthologs from four other organisms (A.
thaliana, M. musculus, D. melanogaster, and S. cerevisiae),
analyzing 3977 DNA microarray experiments in all. From each
analysis (Figure 2C and Supplementary Figure 1) strongly co-
expressing human genes with co-expressing orthologs are
generally likely to encode physically associated proteins. The
highest likelihoods of associating occur when the mRNA
expression patterns of both human gene pairs and their
orthologs are positively correlated, with odds of associating
approaching 460:1 for C. elegans, 200:1 for A. thaliana, 100:1
for M. musculus, 25:1 for D. melanogaster, and 400:1 for S.
cerevisiae. These learned relationships between mRNA ex-
pression profiles and physical associations were then applied
to protein pairs not in the training set, thereby assigning a
likelihood of physically associating to each untested protein
pair. Each human gene pair discovered has at least one log
likelihood score, to a maximum of five, from which the highest
score was identified; pairs were ranked based on this score,
then evaluated as a function of their rank.

Validation of predicted physical protein
associations using known interactions

As this assay relies upon indirect evidence, it is critical that
putative physical associations discovered by this approach be
carefully evaluated. We devised six tests for the enrichment of
true physical associations, including direct experimental assay
of physical association and of four proteins’ functions
suggested by the associations. First and most critically, to
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verify the accuracy of the co-expression-derived associations,
we measured their likelihood to physically associate using an
independent test set of 15 810 known physical associations,
including both direct interactions and complexes (Ramani
et al, 2005). Figure 3A shows that the CCE associations are
highly enriched for true physical associations, varying from
a likelihood ratio of B60:1 to as high as B400:1 of correctly
capturing true physical associations. Importantly, the CCE
pairs score B25–200 times higher than randomized pairs of
the same proteins, as well as associations derived in the same
manner but using only human (not ortholog) DNA microarray
data (Figure 3A). Therefore, the data from orthologs enriched
the signal for human physical protein associations consider-
ably beyond the human data alone.

Second, we examined the functional relationships between
the putative interaction partners. For this test, we compared
the Gene Ontology (GO) and KEGG pathway database
annotations of interacting partners, using a log likelihood
framework (Lee et al, 2004b; Ramani et al, 2005) and testing

the performance of the mapped associations with that of
literature physical interactions (Figure 3B) (Bader et al, 2003;
Peri et al, 2004; Joshi-Tope et al, 2005; Ramani et al, 2005).
Literature associations score in the range of log likelihood ratio
(LLR)¼2.6–3.6, indicating high consistency with GO/KEGG
annotation. As expected, randomized interactions score near
zero, and interactions derived from human-only co-expression
data score lower (LLR¼0.59–1.09). The CCE associations are
comparable to the literature associations. Using interactions
transferred from other organisms (orthology core set (Lehner
and Fraser, 2004); LLR¼2.2) to define a threshold of minimum
acceptable quality and choosing associations (in bins of 1000)
exceeding this threshold, we obtain 7000 associations from the
present analysis, and all subsequent tests were performed on
this set. These associations have a minimum likelihood of 9:1
(90%) of belonging to the same GO/KEGG pathways. For
consistency, subsequent tests include comparisons to the
top-scoring 7000 associations derived from human-only mRNA
co-expression, as well as to networks generated from the same

Figure 1 Overview of the analysis. From gene expression data for pairs of human genes and their orthologs, we identify proteins most likely to physically associate. For
each pair of human genes, we compare the correlation in their mRNA expression patterns with the correlation in expression of their corresponding ortholog pairs,
searching for patterns of conserved co-expression strongly enriched among physically associated proteins. By filtering the data to remove spurious associations (e.g.
from microarray cross-hybridization and non-conserved expression regulation) and testing the associations against known human protein interactions and annotations,
we predict 7000 human physical protein associations.
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proteins found in the CCE associations, but connected by 7000
random interactions (N¼10 random networks).

Validation of predicted physical protein
associations by mass spectrometry

We next used quantitative mass spectrometry to test for
physical associations between CCE partners (Figure 4A).
Performing purifications under native conditions known to
keep protein complexes intact (Dignam et al, 1983), HeLa cells
were lysed, the cytoplasmic and nuclear/mitochondrial frac-
tions were separated, and their respective contents were
fractionated biochemically on two sucrose density gradients.
Proteins were quantified in each fraction by mass spectro-
metry. In all, 3013 proteins were quantified across 14
cytoplasmic and 14 nuclear/mitochondrial sucrose density
gradient fractions (Figure 4B). As proteins in the same
complex should generally co-sediment, we expected physi-
cally associated proteins to often have correlated elution
profiles.

Analysis of known protein complexes verified that compo-
nents of a complex tended to co-elute (Figure 4C; additional

controls in Supplementary Figures 3–5). For example, compo-
nents of the TCP1 chaperone complex show strongly correlated
elution profiles, as do core components of RNA polymerase II;
the latter profiles are distinct from the former. Likewise,
components of the NADH dehydrogenase 1b complex show
strongly correlated elution profiles, eluting entirely in the
nuclear/mitochondrial fraction (Figure 4C). As an example of
the utility of this approach, the protein GRIM-19, initially
identified as a regulator of cell death induced by interferon-
beta and retinoic acid, was later identified to be a subunit of the
NADH dehydrogenase complex 1 (Fearnley et al, 2001); this
association is clearly evident in the co-elution of GRIM-19 with
other components of this complex.

More systematically, positive control human protein inter-
action partners known from literature (Joshi-Tope et al, 2005)
show highly correlated elution profiles (Figure 5), unlike
negative control random pairs (see histograms in Figure 6A).
For cases in which both interaction partners were observed in
the mass spectrometry experiment, 63% of the positive control
pairs exhibited Pearson correlation coefficients 40.4, indicat-
ing a false-negative rate for identifying physical associations
using the mass spectrometry-based elution profiles of 37% at
this correlation threshold (28% if considering correlation

Figure 2 Predicting physically associated proteins from patterns of conserved co-expression. (A) Distribution of mRNA co-expression patterns of 1769 pairs of
proteins that physically associate; (B) the distribution of co-expression patterns of 642 295 protein pairs that are not known to physically associate. By comparing the two
distributions, we identify patterns that indicate the tendency to physically associate. In all panels, the x axis indicates the correlation of mRNA expression profiles of
human gene pairs and the y axis the expression correlation of corresponding ortholog pairs in C. elegans. In (A, B), the z axis (represented as contours from purple (low)
to red (high); white indicates zero) indicates the fraction of human gene pairs in either the true-positive (A) or -negative (B) set having a correlation ‘x’ with
C. elegans orthologs having a correlation ‘y’. (C) Log likelihood that human protein pairs with a given conserved co-expression pattern will physically interact, calculated
as the logarithm of the ratio of the two distributions, corrected by prior expectation, and ranging from blue (negative) to red (positive) is plotted; white indicates zero.
Contours are labeled with values of the log likelihood score.
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coefficients 40.2). This agrees with the expectation that not
all interacting proteins will co-sediment, with a probable bias
toward stable complexes. Similarly, for proteins in the positive
control set, protein pairs with the most correlated elution
profiles showed B40% probability of being in the same
physical complex (Figure 5). Thus, correlated elution across
these fractions is a strong indicator of direct physical
association. As this assay is not used independently for
discovery, but is confirmatory in nature, the false-negative and
true-positive rates are sufficient for evaluating CCE associa-
tions.

Although individual associations could be validated in this
manner, by instead examining the aggregate distribution of
elution profile correlation coefficients, we could directly
estimate the error rate of the CCE associations. We calculated
histograms of Pearson correlation coefficients from pairwise
comparisons of elution profiles for CCE protein pairs, for

protein pairs known from literature (Joshi-Tope et al, 2005) to
be in the same complexes, and from random pairs of proteins
(Figure 6A). We then fit the CCE histogram as a linear mixture
of the positive and negative control histograms; the propor-
tions that give the best fit thereby provided an estimate of the
relative proportions of true and false associations in the CCE
set. From this analysis, we estimate that 49–59% of the
CCE associations correspond to true physical associations
(Figure 6A, inset).

Comparing the CCE associations and the shotgun proteo-
mics elution profiles reveals many interesting associations. For
example, known complexes are correctly recovered, as for the
DNA replication licensing factors MCM3, 5, 6, and 7, or for
components of the proteasome. Figure 6B shows the example
of the proteins prohibitin and prohibitin-2, known to form a
large complex on the mitochondrial membrane that acts to
suppress apoptosis, but which also shuttles to the nucleus in
an estrogen-receptor-dependent manner and acts to repress
transcription (Kasashima et al, 2006). New associations are
also revealed: we observed a predicted physical association
between MCM3 and MCM6 with the retinoblastoma-binding
protein 4 (RBBP4). RBBP4 is known to participate in several
chromosome replication and chromatin remodeling com-
plexes, among them the chromatin assembly factor CAF-1
and a DNA replication-dependent chromatin assembly com-
plex (Verreault et al, 1996). The CCE associations, supported
by mass spectrometry, suggest direct physical association of
RBBP4 with the replication initiation complex as well.

Figure 6B illustrates two other such examples: first, we
predict the ras oncogene-related small GTPase RAB5A, an
essential component of receptor-mediated endocytosis (Bucci
et al, 1992), to associate with the clathrin assembly lymphoid–
myeloid leukemia gene (CALM), a protein that helps recruit
clathrin to endocytic vesicles. The CALM gene is a recurring
site for chromosomal translocations in acute myeloid and
mixed lineage leukemias (Wechsler et al, 2003). Physical
association with RAB5A highlights a possible functional
connection between these two endocytic components and is
interesting in light of the leukemogenesis potential of
chromosomal translocations involving CALM.

Likewise, we predict the A-kinase anchor protein AKAP1 to
be associated with the splicing factor SFRS9. AKAP1 is
primarily involved in anchoring protein kinases, phospha-
tases, and a phosphodiesterase to specific cellular locations,
but also contains KH and Tudor domains, motifs for single-
strand RNA binding (Trendelenburg et al, 1996), which help
target AKAP1 to well-defined nuclear foci in an RNA-
dependent manner (Rogne et al, 2006). The association with
SFRS9, which among other functions is involved in both
constitutive and alternative splicing and can be specifically
localized with other RNA processing proteins to nuclear stress
bodies (Denegri et al, 2001), suggests that AKAP1 may also
have a role in these processes or in mRNA localization,
perhaps integrating RNA processing with signaling.

Quantitative estimates of interaction accuracy

We further validated predicted physical associations by
additional approaches. For each of these tests, we defined a
standard curve relating a quantitative property of a protein

Figure 3 Two measurements of the quality of the derived physical protein
associations. (A) The cumulative log likelihood ratio (LLR) of physically
associating, measured with an independent test set of 15 810 human protein
physical associations, plotted as a function of the number of associations. The
CCE associations are significantly more enriched for known physical associations
than randomized protein pairs or those derived only from human mRNA co-
expression. The left y axis indicates the LLR score for the associations based on
comparison to the known interaction test set; the right y axis indicates the
corresponding likelihood ratio. Associations were ranked by confidence (see
Materials and methods) and binned into sets of 1000 associations per bin for
analysis. (B) The tendency for putative interaction partners to participate in the
same pathway. The left y axis indicates the cumulative LLR (and the right y axis
the corresponding likelihood ratio) for interaction partners to belong to the same
pathway, using the same log likelihood framework as in (A), but employing as a
positive test set the B1.5 million human protein pairs defined in the GO and
KEGG databases as belonging to the same pathway. As in (A), CCE associations
are comparable in quality to literature associations and score significantly
higher than randomized associations and those derived using only human
expression data.
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pair with the tendency of the pair to physically associate,
constructing the curve from control mixtures of literature
(positive) and randomized (negative) physically associating

proteins (Figure 7A). A set of all true-positive physical
associations typical of those used to construct the curve scores
high on these tests (B100% for each standard curve); the
addition of random interactions degrades the performance.
The relationship between each test’s performance and inclu-
sion of false positives is unambiguous and well behaved, as
judged by the quality of the standard curves, agreement
between the tests, and performance curves from mixtures of
known accuracy (Supplementary Figure 6). It is important to
note that there are possible sources of bias for each test;
however, taken as a whole, the tests are strong indicators for
the enrichment of true physical associations.

First, true human physical protein associations should be
enriched for physical interactions among orthologous proteins
in model organisms. We generated control association sets
with known error rates by randomly selecting sets of
7000 interactions with varying proportions of true-positive
and true-negative associations, ranging from 0% true positive
(all 7000 interactions chosen from the true-negative set)
to 100% true positive (all 7000 interactions chosen from
the literature set), repeating the randomization 10 times.
We measured the overlap of each control set with a benchmark
set of 19119 human protein pairs whose worm, yeast, or fly
orthologs have been observed to interact by yeast two-hybrid
(Ito et al, 2000, 2001; Uetz et al, 2000; Giot et al, 2003; Li et al,
2004) or affinity purification/mass spectrometry assays
(Ho et al, 2002; Gavin et al, 2006; Krogan et al, 2006).
Figure 7B shows the resulting standard curve that relates
enrichment for orthologous interactions to percentage of true
physical associations. On the basis of standard curve, we

Figure 4 Mass spectrometry evidence for physical associations among 3013 proteins identified from HeLa cells. (A) HeLa cells were lysed under native conditions that
maintained protein complexes intact, the nuclei/mitochondria were separated from the cytoplasm, and the two were fractionated by sucrose density gradient
ultracentrifugation, collecting 14 fractions from each of the two gradients. Each fraction was analyzed by quantitative shotgun proteomics, resulting in an elution profile for
each of 3013 proteins across the gradients. Proteins in the same physical complex tend to exhibit correlated elution profiles, as shown in (B) for major complexes
following hierarchical clustering of the proteins by their elution profiles (labeling several sets of proteins notably enriched for interaction partners from the indicated
pathways), and in (C) for three specific examples of known protein complexes. Abundance in (B) is calculated as the frequency of MS/MS spectral counts in a given
fraction per protein� 10 000. Examples in (C) are labeled with the average pairwise Pearson correlation coefficient (or >) among the profiles.

Figure 5 Enrichment of known complexes among co-eluting proteins. Proteins
co-eluting across both sucrose gradient experiments are highly likely to belong to
the same physical complex, as demonstrated by considering the subset of
proteins in known human protein complexes (from Reactome; Joshi-Tope et al,
2005) that are also identified in the mass spectrometry experiments, then
calculating the percentage of these protein pairs belonging to the same
Reactome complex as a function of the correlation in their elution profiles. With
increasing correlation, we observe strongly increasing probability of belonging to
the same physical protein complex. Proteins with the most correlated elution
profiles across the 28 experiments are B40% likely to belong to the same protein
complex.
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estimated that B37–41% of the CCE pairs correspond to true
physical associations, somewhat lower than the value by mass
spectrometry co-sedimentation but considerably higher than
both randomized pairs and pairs derived from only human co-
expression data.

As physically associated proteins often share similar
functional annotation (von Mering et al, 2002), we also
created a standard curve based upon the agreement of
interaction partners’ functional annotation, relating
agreement of SwissProt keywords (Wu et al, 2006) to the
percentage of true physical associations (Figure 7C). For each
control set, we measured the average keyword overlap
across 882 SwissProt keywords between the interaction
partners. Keyword overlap varied from B5% for the true-
negative set to B42% for the true-positive set. From this
curve and measurements of the keyword overlap by the 7000
interactions, we estimate B59–68% of the CCE set
represent physical associations. Measurements of the
percentage overlap of GO ‘biological process’ and KEGG
pathway annotations result in comparable values
(B50–53%).

Finally, legitimately associated proteins should be closer in a
gene network (i.e. separated by fewer interactions) than
random pairs. For each putative physical association, we
calculated the distance between the genes’ yeast orthologs in a
functional gene network (Lee et al, 2007). We compared the
distribution of path lengths to distributions from positive and

negative control sets. Figure 7D shows that the interactions
from CCE have a path length distribution more similar to the
positive control set than the negative set, indicating strong
enrichment for true-positive associations among the 7000
interactions. We fit the distribution of path lengths from the
7000 CCE associations as a linear combination of the positive
and negative control distributions (as in Deane et al, 2002).
The proportions from the best fit (Figure 7D) provide an
estimate of the percentage of true physical associations. This
approach estimates the CCE set at B63±3% true physical
associations.

Table I summarizes the measurements of physical associa-
tion, along with comparisons to the randomized and human-
only co-expression control sets. Estimates vary only minimally
with changes in parameters (e.g. using percentage keyword
overlap for Figure 7B versus Jaccard coefficient) or choice of
control sets (e.g. employing alternative literature positive
control sets for Figures 3 or 7; see Supplementary Table 2).
Although individual tests may show some bias, we expect
these biases to average out across the five tests; in fact, the
estimates are similar across the five tests. These measures
demonstrate that CCE associations are, on average, reasonably
accurate (54±10% true physical associations) and biologi-
cally relevant, are comparable in accuracy to direct large-scale
experimental assays (Rual et al, 2005; Stelzl et al, 2005), and
are significantly more enriched for physical associations than
random controls.

Figure 6 Validation of the CCE associations by mass spectrometry. (A) Between 49 and 59% of the 7000 CCE associations correspond to true physical associations,
as estimated with shotgun proteomics elution profiles. The extent of co-elution of positive control (literature; Joshi-Tope et al, 2005), negative control (random), and CCE
associations were calculated as the Pearson correlation coefficients between interaction partners’ elution profiles, defining a correlation coefficient histogram for each set
of associations. The proportion of true positives in the 7000 CCE associations was estimated by fitting the CCE correlation coefficient histogram as a linear mixture of the
control histograms, with the true-positive rate corresponding to the percentage of the positive control histogram providing the best fit (inset). (B) Specific examples of
correlated elution profiles for CCE partners, supporting the physical association of these protein pairs.
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To summarize benchmark support for individual CCE
associations, we calculated a ‘Binary Interaction Overlap
Score (BIOS)’ (Stelzl et al, 2005) for each association (Supple-

mentary Figure 10). By this measure, 4354 (62%) of the 7000
associations have at least one line of additional evidence
supporting them. Scores are reported in the supporting data file.

Figure 7 Three additional estimates of the proportion of true physical associations in the CCE pairs. (A) Overview of the method: 500 control sets of 7000 associations
each (filled circles), composed of varying (but known) proportions of true-positive and true-negative associations, were tested either for overlap with orthologous protein
interactions (in B) or for sharing of functional annotation (in C), generating a standard curve. From this curve and similar measurements on the CCE associations, the
percentage of true physical associations can be estimated. (B) Accuracy estimates from comparison to physical protein interactions between orthologous protein pairs
measured in model organisms. A standard curve that relates an interaction set’s enrichment with orthologous interactions to its percentage of true-positive physical
associations was constructed by measuring the Jaccard coefficients between control sets of known proportions of positive (Joshi-Tope et al, 2005) and negative
(random) physical associations and an independent set of physical interactions derived from yeast (Ito et al, 2000, 2001; Uetz et al, 2000; Ho et al, 2002; Gavin et al,
2006; Krogan et al, 2006), C. elegans (Li et al, 2004), and fly (Giot et al, 2003). From this curve and the overlap measured for the CCE associations, we estimated that
37–41% of the CCE associations correspond to true physical associations, considerably higher than for randomized sets of the 7000 interactions (plotted as the mean of
10 trials) and the top 7000 associations were derived using only human mRNA expression data. (C) A standard curve based on overlap of SwissProt keywords suggests
that 59–68% of CCE associations correspond to physical associations. (D) Accuracy was estimated from comparison to a probabilistic yeast gene network (Lee et al,
2007). The distances between yeast orthologs of interacting human proteins were measured in the yeast network as the minimum number of interactions separating
each pair of proteins. The resulting histogram of distances is plotted for each association set tested and for positive and negative control sets. Note that the distribution
from CCE associations resembles the positive control set. The percentage of true and false positives in the CCE associations was estimated by fitting the distribution as a
linear mixture of the positive and negative distributions (inset), minimizing the least squares criterion (r.m.s.d.; root mean square deviation); 63±3% of the 7000 CCE
associations correspond to true physical associations by this test. Shuffling the interactions among the same proteins lowers the accuracy to 6±3% by this test. Error
bars on the randomized association set indicate ±1 s.d. for N¼10 random trials.

Table I Proportions of true physical associations measured for the CCE pairs and two control sets, using the methods of Figures 3, 6 and 7

Percentage of true physical associations as measured by Average of five
tests (±s.d.)

Shotgun proteomics
co-elution

Worm/fly/yeast
physical interaction

GO/KEGG
overlap

SwissProt
keyword overlap

Yeast network
path length

7000 conserved
co-expression

49–59 37–41 50–53 59–68 63±3 54±10

Human-only co-
expression (top 7000)

18–28 1–2 3–6 12–22 9±3 15±9

7000 randomized 0–5 2–5 7–10 3–8 6±3 5±2

Ranges of values are derived by comparison to the corresponding standard curves. Estimates of variance (±s.d.) for the path length method and ranges for the
co-elution method are average values derived from analysis of control mixtures of known proportions of true and false positives.
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Detailed evaluation of ribosome biogenesis
proteins

To experimentally evaluate the quality of hypotheses arising
from the CCE associations, and given a statistical enrichment
for proteins of ribosome biogenesis (see below), we analyzed
proteins predominantly linked to proteins of ribosome
biogenesis, a pathway involving several hundred proteins yet
still incomplete (Granneman and Baserga, 2004). We chose
four proteins with yeast orthologs for direct validation: (i)
WBSCR20C, named for Williams–Beuren syndrome chromo-
some region 20C, shares high sequence similarity with
duplicate genes WBSCR20A and WBSCR20B. This gene is
deleted in Williams–Beuren syndrome, a multi-system devel-
opmental disorder caused by deletion of genes at the 7q11.23
locus (Doll and Grzeschik, 2001). WBSCR20C encodes a
conserved Nol1/Nop2/Sun family protein domain and is also a
member of the COG0144 protein family, other members of
which are tRNA and rRNA cytosine-C5-methylases involved in
translation, ribosomal structure, and biogenesis. YNL022C,
the yeast ortholog of WBSCR20C, is also uncharacterized.
(ii) BCCIP, or ‘BRCA2 and CDKN1A interacting protein’, is an
evolutionarily conserved nuclear protein with multiple protein
interaction domains. This protein may be an important
cofactor for BRCA2 in tumor suppression (Lu et al, 2005)
and a modulator of CDK2 kinase activity via p21 (Meng et al,

2004). The yeast ortholog of this protein (Bcp1p) is an essential
nuclear protein involved in nuclear export of lipid kinase
Mss4p (Audhya and Emr, 2003). (iii) EPRS is predicted by
sequence to be a multi-functional aminoacyl-tRNA synthetase.
Its yeast ortholog YHR020W is essential, with sequence
similarity to proline-tRNA ligase, but otherwise uncharacter-
ized. (iv) LYAR is a nucleolar zinc-finger-containing protein
(Su et al, 1993) whose yeast ortholog YCR087C-A is nucleolar
(Huh et al, 2003), but uncharacterized.

We tested the ribosomal processing phenotypes of yeast
strains with tetracycline-controlled downregulatable alleles of
the genes (Mnaimneh et al, 2004). Two of the strains (TetO7-
BCP1 and TetO7-YHR020W) show clear ribosomal processing
defects upon downregulation of the genes (Figure 8B and C).
From polysome profiles, Bcp1p (corresponding to human
protein BCCIP) appears to participate in 60S ribosomal subunit
biogenesis; loss of the protein results in the reduction in the
60S peak relative to the 40S peak. YHR020W (corresponding to
human protein EPRS) appears to participate in 40S biogenesis,
resulting in a decreased 40S/60S ratio when depleted. We also
tested each of the four proteins for co-sedimentation with
the 40S, 60S, or 80S monoribosomes, which would provide
additional support for the proteins’ participation in ribosome
processing. From crude cell lysates of yeast strains expressing
TAP-tagged versions of each protein (Ghaemmaghami
et al, 2003), we size-fractionated ribosomal subunits, free

Figure 8 Experimental evidence supporting the network-based association of four proteins with ribosome biogenesis. (A) Co-sedimentation of TAP-tagged proteins
(Ghaemmaghami et al, 2003) with ribosomal subunits. (Top) An extract of wild-type yeast cells was fractionated on a 7–47% sucrose gradient, monitoring absorbance at
254 nm. Labeled peaks indicate the 40S and 60S subunits, 80S monoribosomes, and polysomes. (bottom) Immunoblots of sucrose gradient fractions indicate the
distributions of TAP-tagged proteins. YNL022C and YCR087C-A co-sediment with 60S, and both 40S and 60S ribosomal subunits, respectively, as can be seen by
comparison with the sedimentation of Tsr1p-TAP, known to associate with 40S subunits (Gelperin et al, 2001), and Nmd3p-TAP, known to associate with 60S subunits
(Ho and Johnson, 1999), as well as by contrast to the sedimentation of the unrelated negative control protein Tdh1p-TAP and with the background signal from wild-type
cells lacking TAP-tagged proteins. Bcp1p co-sediments with 40S and 60S subunits to a lesser extent than the controls; however, this behavior apparently stems from
destabilization of the protein by the TAP tag, as shown in (B). (B) Polysome profiles of cells depleted (by doxycycline-controlled downregulation; Mnaimneh et al, 2004)
for Bcp1p or of cells expressing Bcp1p-TAP both show increased 40S/60S ratios and formation of aberrant ribosome halfmers (black arrows), implicating Bcp1p in 60S
subunit biogenesis. (C) Polysome profiles of cells depleted for YHR020W show diminished 40S peaks and polysome peaks after doxycycline incubation (þDOX),
suggesting participation of YHR020W in 40S biogenesis and possibly translation initiation.

Human protein interactome
AK Ramani et al

& 2008 EMBO and Nature Publishing Group Molecular Systems Biology 2008 9



ribosomes, and polysomes using sucrose gradients. Three of
the proteins (YCR087C-A, YNL022C, and Bcp1p) showed clear
association with 40S and 60S subunits (Figure 8A), with Bcp1p
and YCR087C-A associated with both 40S and 60S, and
YNL022C showing preferential co-sedimentation with the 60S
subunits. Mass spectrometry of untagged YHR020W, analyz-
ing yeast lysate with the approach of Figure 4 (data not
shown), indicates that YHR020W also co-sediments with 60S
ribosomal subunits (Z Li and EM Marcotte, unpublished data).
The Bcp1p-TAP co-sedimentation is less definitive than the
controls; however, the polysome profile of the TAP-tagged
Bcp1p strain indicates that the TAP tag itself disrupts Bcp1p
activity (Figure 8B), causing a 60S ribosomal biogenesis defect
and definitively implicating the protein in this process. The
human BCCIP protein was also found by mass spectrometry
to co-sediment with free cytosolic 40S and 60S ribosomal
subunits (Supplementary Figure 4), raising the possibility of a
role in ribosome recycling or nuclear export. All four genes
assayed could therefore be implicated in ribosomal biogenesis.

Discussion

Characteristics of the newly mapped associations

We have described the prediction of 7000 human protein
physical associations from indirect transcriptional evidence, as
well as measurement of overall error rates and validation of
specific associations. We further examined the associations for
novelty, functional bias, and evidence for stable protein
complexes. First, we compared the predicted interaction set
directly to the existing human protein interaction data sets.
Roughly 20% of the CCE associations can be directly verified
from previously known interactions, while B80% are new.
Our analysis bears some relation to one reported by Stuart
et al, which analyzed CCE, although not for the purpose
of discovering physical interactions. However, we obtain a
largely non-overlapping set of associations, sharing only 12%
of associations (Supplementary Table 1). Differences arise
primarily because we are explicitly learning physical associa-
tions using a supervised training framework; other differences
include the choice of expression data, the methods for defining
orthologs, the criterion used to define co-expression (we set a
statistical significance threshold on the correlation coefficient;
Stuart et al use correlation coefficients40.2), and our removal
of potential cross-hybridization artifacts, all of which con-
tribute to producing largely distinct sets of associations. Only
three CCE interactions are shared with large-scale yeast two-
hybrid analyses of human proteins (Rual et al, 2005; Stelzl
et al, 2005), 15 with affinity purification/mass spectrometry
analysis (Ewing et al, 2007), 195 with a previous computa-
tional analysis (Rhodes et al, 2005), and 211 with interactions
inferred from other organisms in the OPHID database (Brown
and Jurisica, 2005). These comparisons are summarized in
Supplementary Table 1. In all, 5589 of the 7000 associations
predicted in this analysis were not identified in previous high-
throughput human protein interaction screens.

Besides simply being novel associations, 80% of the
interaction partners (66% of annotated interaction partners)
share neither KEGG nor GO annotations. While this extent of
annotation sharing across the set of partners is sufficient to

imply high confidence associations (Table I), these results
indicate that the inferred associations extend beyond trivial
identification of new associations among proteins already
known to be in the same pathways.

We examined the functions of the 2348 proteins in the set of
7000 associations (Supplementary Figure 7), using for this
purpose the proteins’ KOG annotations (Tatusov et al, 2003).
We find the dominant class of proteins to be those for whom
only general function is known (224 proteins); followed by 180
proteins participating in post-translational modifications,
protein turnover, and chaperones; 163 in signal transduction;
141 in translation, ribosomal structure, and biogenesis; 141 in
transcription; 117 of RNA processing and modification; and
87 of unknown function. Therefore, the proteins are not
dominated by a single structure (e.g. the ribosome), but are
generally informative for major cellular systems and unchar-
acterized proteins. Nonetheless, some specific functional
biases occur among the CCE proteins (Supplementary Figures
8 and 9), mostly notable a statistical enrichment for proteins of
membrane-bound organelles (e.g. nucleus, mitochondria,
nucleolus, etc.), presumably reflecting evolutionary conserva-
tion of these proteins and their regulation, favoring detection
by the CCE method. Likewise, proteins of RNA metabolism are
enriched, especially ribosome biogenesis, with accompanying
enrichment for nucleotide-binding protein domains. The
overall trends among the proteins can be seen in a plot of
the CCE associations, clustered by the spectrum of associations

Figure 9 The 7000 associations discovered by CCE. The data are plotted as a
matrix showing associations (filled entries) among 2348 proteins (rows and
columns) after hierarchically clustering (Eisen et al, 1998) proteins by their
association vectors. Clustering of proteins into complexes is clear in the marked
boxes. The majority of associations are distributed among smaller clusters of
proteins, with many occurring between pairs of proteins not participating in larger
cliques. Clusters were drawn with TreeView (Eisen et al, 1998).
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per protein (Figure 9), which shows that although several
major clusters exist, many associations are binary protein
pairs that are not otherwise seen to exist in larger assemblies,
and thus lie far from the diagonal of the clustergram.

This clustering, along with the 1411 associations over-
lapping other data sets, provides some insight into the nature
of the CCE associations. Both direct interactions, especially
among members of larger complexes, as well as co-complex
physical associations are observed. For example, interactions
are observed between alpha- and beta-tubulin, which assem-
ble into a heterodimer; SNRPE and SNRPF, known to bind
directly in the core complex of spliceosomal U1, U2, U4, and
U5 snRNPs (Camasses et al, 1998); and the E2 and E3 subunits
of pyruvate dehydrogenase, which interact directly. A compar-
ison of the 7000 CCE associations with experimentally
determined protein interactions among components of the
20S proteasome, as determined from the X-ray crystal
structure (Groll et al, 1997), reveals four interactions between
proteins that directly contact each other in the proteasome
(PSMA2–PSMA6, PSMB3–PSMB2, PSMA4–PSMB2, and PSMA1–
PSMB1), and nine interactions between proteins that assemble
into the same physical complex, but do not directly contact
each other (PSMA3–PSMA4, PSMA6–PSMB2, PSMA4–
PSMA6, PSMA6–PSMB3, PSMA2–PSMB1, PSMA2–PSMA1,
PSMA2–PSMB2, PSMA6–PSMA5, and PSMA5–PSMB2).
Therefore, as expected, both direct binding and co-complex
interactions can be found among the 7000 associations.

In fact, the CCE pairs are strongly statistically enriched for
co-complex associations typical of affinity purification/mass
spectrometry interaction assays. If we consider only the subset
of 2138 CCE pairs (out of the 7000) in which both proteins have
yeast orthologs, 118 of these can be verified by the MIPS
database as belonging to the same yeast complex (using the
‘hand-curated’ set of protein complexes; Guldener et al, 2005).
This value is 21 standard deviations (Po10�98) above the
mean of random trials: randomizing the 7000 interactions and
repeating the comparison gives a mean of 23±4.5 confirmed
interactions for N¼100 random trials. Similar enrichment can
be seen by comparison with yeast protein complexes defined
by affinity purification/mass spectrometry (Gavin et al, 2006;
Krogan et al, 2006): 74 of the 2138 CCE pairs can be confirmed,
8 standard deviations (Po10�15) above the mean of random
trials (29±5.5, N¼100). Likewise, 392 of the 2138 CCE pairs
can be confirmed by comparison to the full-matrix form of
these data (i.e. considering both bait–prey and prey–prey
interactions), 10 standard deviations (Po10�25) above the
mean of random trials (214±17, N¼100).

Finally, we looked for organismal bias among the CCE
pairs, examining which model organism contributed the
top LLR score for each interaction (Supplementary Table 3).
The most associations were contributed from the comparison
of human and C. elegans expression, accounting for 2949 of
the 7000 associations, and the least (158) from mouse.
The low number contributed by comparison to mouse
may suggest the importance of employing more distant
orthologs, especially to non-mammalian animals, in identify-
ing interactions by this approach, but more probably
stems from characteristics of the data employed, such as the
smaller number of mouse microarray experiments analyzed
(Supplementary Table 4).

One interesting aspect of the CCE assay is that it intrinsically
samples all pairs of genes that are measured on the DNA
microarrays. This has the effect of increasing the numbers of
proteins for which interactions are observed, and thereby
decreasing the number of interactions per protein (7000
interactions for 2348 proteins B3 interactions per protein,
somewhat lower than the 5–15 interactions per protein
observed in other data sets (Ramani et al, 2005)).

Limitations, false positives, and potential
improvements

Given the derivation of CCE pairs from transcriptional
evidence, there are important features and limitations to note.
First, strong co-expression tends to coincide with stable, rather
than transient, physical association (Jansen et al, 2002), and
we expect CCE pairs to reflect this trend, with a correspond-
ingly higher false-negative rate for transient interactions.
Second, based on our measured error rates, there are still
appreciable false-positive associations, although the false-
positive and -negative error rates are comparable to the only
direct experimental approaches—yeast two-hybrid assays and
mass spectrometry of cloned, epitope-tagged human pro-
teins—that have been applied to map physical associations on
this scale. However, CCE false positives have unusual proper-
ties. As the CCE pairs were the highest scoring (top 0.1%) of
45 million tested gene pairs, the association partners are
strongly co-regulated in an evolutionarily conserved manner,
and thus are highly likely to function together, even if not
physically associated. Finally, algorithmic improvements,
such as better orthology assignment and alternative super-
vised learning frameworks, and application to additional DNA
microarray data, e.g. tissue- and cell-type-specific data to learn
tissue- and cell-type-specific associations, are certain to reveal
new associations when applied in the general framework we
have described. Thus, we expect new CCE associations can be
identified by modifications to this method.

Similarly, the mass spectrometry data used to test the CCE
associations have some important features and limitations.
Primarily, co-sedimentation alone is not proof of physical
association—it is possible for unrelated complexes to co-
sediment—as reflected in the measured true-positive and
false-negative rates for associations inferred solely from these
data. These sedimentation-derived associations should thus
not be viewed as standalone. However, as a benchmark
applied in the manner we present (e.g. analyzed in aggregate
form), or when considered in combination with other data,
such as incorporated into the BIOS scores of the CCE
associations, we find the mass spectrometry data to be
extremely valuable. We suggest that benchmarks of this sort
could be of great utility for evaluating physical complexes
determined by other methods, and could be generally adopted
for measuring assay accuracy.

Conclusions

The scale of the human interactome appears to be beyond
any individual technique; a combination of complementary
approaches will be needed to map the complete human
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protein–protein interaction network. Although current meth-
ods for mapping interactions focus largely on direct experi-
mental observations, sufficient functional genomics data exist
that physical protein associations can also be indirectly
identified from these data. We demonstrate that these
approaches can be comparable in scale and quality, both in
terms of false-positive and false-negative rates, to the current
largest scale experimental screens. Finally, as CCE-based
physical protein association mapping is based on conserved
in vivo phenomena, this approach is likely to specifically
discover associations relevant to in vivo biology.

Materials and methods

Mapping of orthologs

Orthologs were obtained from the InParanoid database (Remm et al,
2001) as SwissProt identifiers for human proteins and their orthologs
from five other organisms (A. thaliana, C. elegans, D. melanogaster,
M. musculus and S. cerevisiae). Using ID-Serve (http://bioinformatics.
icmb.utexas.edu/idserve) and organism-specific databases, the Swis-
sProt identifier for each gene was mapped to alternate identifiers:
LocusLink identifiers (human), common names (M. musculus),
WormBase identifiers (C. elegans), Locus codes (A. thaliana), Flybase
gene identifiers (D. melanogaster), and standardized gene names (S.
cerevisiae). Supplementary Table 5 lists the numbers of orthologous
genes analyzed.

mRNA expression data

All mRNA expression data (Supplementary Table 4) were obtained
from the Stanford Microarray Database (Ball et al, 2005). It has
previously been shown that extraction of co-expression relationships
is improved by restricting comparisons to similar conditions and
experiments (Lee et al, 2004a, b; Segal et al, 2004). We therefore
divided the available 1922 human DNA microarray experiments into
11 categories of experiments, as assigned by the Stanford Microarray
Database, and restricted comparisons to experiments in the same
category. Expression data for other organisms were treated as single
categories. Each of the microarray expression vectors was mean
centered (row and column) and normalized before carrying out
correlation analysis.

Calculation of co-expression

For each pair of human genes, as well as for their corresponding
orthologs, the Pearson correlation coefficient was computed between
the mRNA expression vectors. For each gene pair, this gives 11
measurements of correlation corresponding to the 11 categories of
human expression data sets and up to 5 for the correlation between the
orthologs in the other organisms. Paralogs (as defined by InParanoid)
were excluded from being compared to each other, as they tend to have
similar expression profiles and thus high correlation, which we
empirically observe to substantially increase the false-positive rate.
The significance of each correlation was computed based on t-test
statistics as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2

t2 þ n � 2

r

where r is the minimum significant correlation for n values in the two
expression vectors being compared and t is the t-test value at a
probability of Pp0.01 from a t-test table. Only statistically significant
correlation coefficients were retained, thereby accounting for varia-
bility in the sparseness of expression vectors. For example, using
expression vectors of 100 experiments with only 50 data points
available for both genes being compared, the absolute value of
correlation must be 40.36 for the comparison to be statistically
significant at Pp0.01.

Removal of cross-hybridization artifacts

Cross-hybridization occurs when an mRNA probe binds to a non-
cognate spot on the microarray instead of its perfect complement spot.
This creates both false positives (due to additional signal at incorrect
positions on the array) and false negatives (due to reduced signal in
correct positions). Although cross-hybridization is well established in
spotted cDNA-based DNA microarray experiments (Kane et al, 2000;
Murray et al, 2001; Xu et al, 2001), there are no universal standards for
filtering such effects. In this analysis, we expected that cross-
hybridizing gene pairs would appear to have similar expression
patterns and therefore contribute false positives to our analysis.

To filter out these potentially spurious interactions arising from
cross-hybridization, we established a threshold for excluding cross-
hybridization based upon analysis of the hybridization of four yeast
genes (YPL274W, YLR467W, YIR039C, and YKL224) to their homologs
on a yeast DNA microarray. The four genes were chosen such that
BLAST-based comparisons of the genes’ DNA sequences to other genes
in the yeast genome yielded hits with percent identities to the query
sequence in the range of 50–100% and BLAST E-values p10�4. The
four query genes were amplified using standard PCR techniques and
primers to flanking DNA, labeled with Cy5, mixed with Cy3-labeled
reference DNA (Carlson, 2002), and hybridized to a yeast cDNA
microarray containing B12 000 spots comprising all the yeast genes
and intergenic regions (Carlson, 2002; Hahn et al, 2004; Kim and Iyer,
2004). Standard microarray analysis was carried out to quantify
hybridization strength as the mean of ratios of Cy5/Cy3 fluorescence
intensities across spots. By plotting hybridization strength against the
DNA sequence identity of the genes (Supplementary Figure 2), we
identified an operational threshold of BLAST E-value p10�4 and DNA
sequence identity X70% within the aligned regions. Gene pairs that
exceed this threshold (with either the human or model organism gene
pair DNA sequences) were likely to cross-hybridize and were excluded
from further analysis. This filter removes 47145 protein pairs from the
plant–human analysis, 37 519 from the worm–human, 26 724 from the
fly–human, 39 286 from the mouse–human, and 2193 from the yeast–
human analysis. This filtration preferentially removes many false-
positive interactions, as the average expression correlation of the
filtered pairs was significantly higher than for the remaining pairs (e.g.
the average expression correlation in the human–plant analysis was
0.28, while the average for the filtered pairs was 0.56), with the
maximum expression correlation among the removed pairs equal to
1.0 for all comparisons.

Training to extract physical protein associations

We used the 31 609 human protein interactions from Ramani et al
(2005) as the physical association benchmark. The associations were
randomly separated into testing and training data sets (15 810 and
15 799 associations, respectively). For each of the five human gene
pair/ortholog gene pair sets, the maximum expression correlation of
the human genes from the 11 data sets was plotted along the x axis and
the correlation of the orthologous genes plotted along the y axis (as in
Figure 2). The fraction of gene pairs that showed a particular
expression pattern was measured in bins of 0.1�0.1 units. Two-
dimensional histograms were calculated for interacting proteins and
for non-interacting proteins in the training set. The logarithm of the
ratio of the histograms at a given position in the plot, corrected by the
background likelihood of physical associations in the training set,
gives the log likelihood estimate of physical association conditioned on
the degree of co-expression of the human genes and their orthologs in
that organism. To minimize possible errors due to orthology assign-
ments, we further considered only counts in the upper right-hand
quadrant of each analysis, corresponding to gene pairs for which the
human and other organismal experiments describe similar co-
expression trends. Protein pairs outside of the training set were then
assigned log likelihood scores according to their expression patterns in
these data sets. Similar analyses were performed for associations
derived from comparison of human expression data with each of the
four other organism-specific data sets, associating the maximum score
from these five analyses as each protein pairs’ estimated likelihood of
associating physically. (The maximum score outperformed the
naı̈ve Bayes sum of scores, suggesting that the five scores are not
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independent.) The 7000 top-scoring associations are listed in
Supplementary information.

The human-only co-expression control set was generated by
considering only the human DNA microarray data, ignoring contribu-
tions from other organisms and lifting the requirement for each
member of a gene pair to have orthologs in the same second organism.
Putative associations were identified as for the CCE case, but instead
using the log likelihood framework to relate the correlation coefficients
across only the human DNA microarray experiments to the likelihood
of physically associating. All other calculations were performed
identically to the CCE case, including calculation of correlation
coefficients, significance testing of correlations, calculation of like-
lihood values, selection of priors, and filtration for cross-hybridization.

Testing for enrichment of known physical
associations

We measured enrichment for known physical associations using the
independent test set of 15 810 physical associations and the same LLR
framework used to initially derive the CCE associations. The 15 810
associations formed the positive test set; the negative test set was
defined as all pairs of proteins chosen from the 15 810 associations set,
omitting the 15 810 associations themselves. The prior odds ratio of
interacting (P(I)/P(BI)) equaled the ratio of positive to negative test
set examples (0.00085). For each query association network being
tested (or for a given bin of 1000 associations selected from a rank-
ordered list), we measured the fraction of query set associations shared
with the positive test set (P(I|D)), as well as the fraction shared with
the negative test set (P(BI|D)). The posterior odds ratio was calculated
as P(I|D)/P(BI|D), and the LLR calculated as indicated in the main
text, equal to the posterior odds ratio divided by the prior odds ratio.
For the purposes of Figure 3A, the log likelihood was calculated in a
cumulative manner (i.e. aggregating successive bins of 1000 associa-
tions for analysis.).

Testing for functional similarity

We measured functional similarity of interacting protein pairs by using
the gene annotation information obtained from GO (Ashburner et al,
2000) process level 8 annotation and KEGG pathway annotation
(Kanehisa et al, 2004). These databases provide specific pathway and
biological process annotations for 7390 human genes, assigning them
into 155 KEGG pathways (at the lowest level of KEGG) and 1356 GO
pathways (at level 8 of the GO biological process annotation).
Interactions were first rank-ordered by confidence scores. For each
successive bin of 1000 interactions, the functional similarity was
calculated in a cumulative manner by counting the number of pairs in
that bin or previous bins that shared a functional annotation, dividing
this by the number of pairs that did not share functional annotation,
and correcting by the prior probability of annotated pairs sharing
annotation (0.0589).

Construction of standard curves for estimating
percentages of physical associations

Standard curves were constructed as described in the main text.
Positive control sets for Figure 7B and C were selected from the hand-
curated protein complex assignments of Reactome (Joshi-Tope et al,
2005). For the analysis of Figure 7B, we restricted the analysis to the
portion of each data set for which both interacting proteins have
orthologs among the yeast, worm, or fly proteins sampled by the
benchmark assays (i.e. considering only the subspace of interactions
spanned by the assay bait–prey pairs). For the standard curves of both
Figure 7B and C, the derived percentages of physical associations do
not strongly depend upon the sizes of the data sets or control sets, only
upon their tendencies to share orthologous interactions or functional
annotations (data not shown). Ranges of accuracies were derived
directly from the standard curve (i.e. as empirically measured from
replicate analysis of control mixtures of true- and false-positive
interactions).

For the linear mixture model of Figure 7D, positive control
associations were taken from Joshi-Tope et al (2005), only considering
genes with yeast orthologs, and negative control associations taken as
pairs of human genes from the positive control set that have yeast
orthologs but do not have recorded interactions. To minimize possible
circularity, we removed all functional linkages from the yeast network
that were derived only from mRNA co-expression data. The variances
associated with accuracy estimates in Figure 7D were derived from 10
replicate analyses of mixtures of known proportions of true- and false-
positive interactions (Supplementary Figure 6).

Binary interaction overlap score

To further assign confidence to each association, we have adopted the
BIOS of Stelzl et al (2005): based upon the benchmark sets (Table I), we
assign each association þ 1 if the protein pair is observed in the
physical interaction benchmark, þ 1 for sharing GO/KEGG keywords,
þ 1 for sharing SwissProt keywords, þ 1 for sharing KOG annotation,
þ 1 for being observed in the orthologous interaction benchmark, þ 1
for having a correlation coefficient 40.4 in the mass spectrometry
elution profile experiments, and þ 1 for having yeast orthologs that are
either directly connected or one link separated in the yeast functional
network benchmark (with expression-only and orthology-derived
links omitted). Each association is thus scored from 0 to 7 based on
additional support for that association; the BIOS scores generally
correlate with the LLR scores (Supplementary Figure 10) and are
reported in the supporting data file.

Human cell culture and mass spectrometry

HeLa S3 cells were cultured in Dulbecco’s modified Eagle’s medium
supplemented with 10% fetal bovine serum at 371C with 5% CO2. At
about 80% confluency, cells were treated with 100mg/ml emetine for
10 min and harvested by scraping. Cells were centrifuged at 500 g for
10 min, washed three times with cold PBS buffer, and resuspended in
five packed cell volumes of cold lysis buffer (10 mM Tris pH 7.4, 20 mM
KCl, 5 mM MgCl2). After swelling on ice for 10 min, cells were
centrifuged at 500 g for 10 min and resuspended in one packed cell
volume cold lysis buffer supplemented with 1� protease inhibitor
cocktail (Roche) and 100mg/ml emetine. After lysing the cells with a
dounce homogenizer, nuclei were collected by centrifuging at 1000 g
for 10 min. The supernatant was centrifuged at 15 000 g for 10 min to
obtain the cytosolic fraction. Nuclei were suspended in lysis buffer and
lysed by sonication, collecting the clarified supernatant after centri-
fugation at 15 000 g for 10 min.

The cytosolic and the nuclear fractions were each loaded onto
continuous 7–47% sucrose gradients in lysis buffer. After a 2.5-h spin
at 40 000 r.p.m. in a Beckman SW40 rotor, the sucrose gradient was
fractionated using an ISCO gradient fractionation system. Proteins
from each fraction were precipitated with 10% cold trichloroacetic acid
(TCA) and washed with 100% cold acetone. The protein pellets were
suspended in 100 mM pH 8.0 Tris buffer and digested with sequencing
grade trypsin (Sigma). For each fraction, tryptic peptides were loaded
onto a reverse-phase C18 column and washed with 95% water, 5%
acetonitrile, and 0.1% formic acid. Peptides were eluted with a 240-
min gradient from 5 to 40% acetonitrile and analyzed online with a
nanoelectrospray ionization (300 nl/min flow rate) LTQ-Orbitrap
hybrid mass spectrometer (Thermo Electron) using data-dependent
precursor ion selection. Each parent ion mass spectrum (MS) was
analyzed at high resolution (100 000) with the Orbitrap; the top seven
MS peaks were fragmented by helium collision-induced dissociation at
35 eV, analyzing the resulting MS/MS spectra with the LTQ.
Approximately 35 000 MS/MS spectra were collected per fraction.
Spectra were searched against the set of NCBI human protein
sequences using TurboSequest (Bioworks v.3.2, Thermo Electron).
Proteins from each fraction were identified at a 5% false detection rate
using Peptide/ProteinProphet (Keller et al, 2002; Nesvizhskii et al,
2003). The spectral count (number of total observations of MS/MS
spectra from a given protein in a given fraction) was used as an
estimate of protein abundance (Liu et al, 2004), dividing the spectral
count of a protein (� 10 000) by the sum of spectral counts for all
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proteins identified in that fraction. Protein elution profiles are provided
as Supplementary information.

Yeast media and strains

All yeast strains were cultured in YPD (1% yeast extract, 2% peptone,
and 2% dextrose) at 301C. Tetracycline promoter-controlled essential
gene haploid MATa strains (Mnaimneh et al, 2004) and TAP-tagged
haploid MATa strains (Ghaemmaghami et al, 2003) were obtained from
Open Biosystems.

Polysome profile analysis

All yeast strains were cultured to OD600 0.3–0.5. For tetracycline
promoter-controlled alleles, overnight cultures were diluted to OD600

0.01, 10mg/ml doxycycline (Fisher Scientific) was added into the
media, and cells were grown to OD600 0.3–0.5. Cycloheximide (100 mg/
ml) (Sigma) was added to each culture. Cultures were immediately
cooled with ice, and all subsequent steps were performed on ice or at
41C. Each cell pellet was washed once with lysis buffer (20 mM Tris pH
7.4, 20 mM KCl, 5 mM MgCl2, 100mg/ml cycloheximide, 12 mM b-
mercaptoethanol, 2 mg/ml leupeptin, 2mg/ml aprotinin, 1mg/ml
bestatin, and 1mg/ml pepstatin A) without protease inhibitors (MP
Biomedicals Inc.). The cells were pelleted, resuspended in one volume
lysis buffer, and lysed with glass beads. Crude lysates were centrifuged
at 15 000 g for 10 min. Fifteen OD260 units of each supernatant were
loaded onto continuous 12 ml 7–47% sucrose gradients in polysome
lysis buffer without protease inhibitors, as in Baim et al (1985). After a
2.5-h spin at 40 000 r.p.m. in a Beckman SW40 rotor, the sucrose
gradient was fractionated and absorbance at 254 nm was measured.
For TAP-tagged strains, fractions were collected, and proteins were
precipitated with 10% cold TCA and washed with 100% cold acetone.

Immunoblotting

Precipitated proteins were resuspended in 20 ml Laemmli buffer
and 2 ml of each sample was deposited onto nitrocellulose membrane.
TAP-tagged proteins were detected with PAP antibody (Rockland
Immunochemicals Inc.) and chemiluminescence (ECL; Amersham
Biosciences).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).

Supplementary information includes 10 figures, 5 tables, the list of
7000 CCE associations, and the list of elution profiles for 3013 HeLa
proteins. Raw mass spectrometry data are available as opd00104_HU-
MAN and opd00105_HUMAN from the Open Proteomics Database
(Prince et al, 2004).
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