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We report a computational, structure-based redesign of the phe-
nylalanine adenylation domain of the nonribosomal peptide syn-
thetase enzyme gramicidin S synthetase A (GrsA-PheA) for a set of
noncognate substrates for which the wild-type enzyme has little or
virtually no specificity. Experimental validation of a set of top-
ranked computationally predicted enzyme mutants shows signif-
icant improvement in the specificity for the target substrates. We
further present enhancements to the methodology for computa-
tional enzyme redesign that are experimentally shown to result in
significant additional improvements in the target substrate spec-
ificity. The mutant with the highest activity for a noncognate
substrate exhibits 1/6 of the wild-type enzyme/wild-type substrate
activity, further confirming the feasibility of our computational
approach. Our results suggest that structure-based protein design
can identify active mutants different from those selected by
evolution.

biophysical algorithms � gramicidin S synthetase �
nonribosomal peptide synthetase � protein design

Despite recent successes, enzyme design has posed significant
challenges for both computational and purely experimental

approaches. Until recently, computational enzyme design ap-
proaches have met with limited success (1–3), making experi-
mental techniques, such as directed evolution, the preferred
method for designing new enzymes (4–7). Advances in both
algorithms and modeling recently resulted in the first computa-
tionally driven de novo structure-based design of active enzymes
(8, 9). A fully automated computational approach that is appli-
cable to general enzyme design problems, however, is yet to be
developed.

A major advantage of computational structure-based protein
design over the purely experimental approaches lies in its ability
to efficiently (and inexpensively) search a significantly larger
portion of the available space of candidate mutations. Unfortu-
nately, computational approaches must rely on simplified mod-
els that only approximate real proteins and their interactions.
Among the typical simplifying model assumptions are: a rigid
protein backbone, a rotamer library of discrete side-chain con-
formations (10, 11), and a pairwise energy function (12, 13). To
improve the accuracy of the model, some recent advances in
computational protein design have incorporated continuous
flexible rotamers (14) and continuous (15) or discrete (16, 17)
backbone flexibility. More accurate energy functions are some-
times used as a postprocessing step to reevaluate and rerank the
top-scoring predictions from the initial model (18). Despite the
imperfections of the underlying models, the computational
approaches have yielded successful designs of proteins with
improved target properties (2, 18–21). Designing for enzyme
activity, however, has proven to be far more elusive. The
difficulty of designing enzymes via computational methods can
be attributed to the more poorly understood catalytic enzyme
machinery and the increased inability of the simplified models to
represent the catalytically relevant interactions (and especially
the high-energy transition states) accurately.

Here, we present a computational structure-based redesign of
the 65-kDa phenylalanine adenylation domain of the nonribo-
somal peptide synthetase (NRPS) enzyme gramicidin S syn-
thetase A (GrsA-PheA) for a set of noncognate substrates.
NRPS enzymes are large multidomain protein complexes that
work in an assembly-line manner and whose products include
many peptides of pharmacological interest (including penicillin
and vancomycin) (22). GrsA, in concert with GrsB, makes the
decapeptide antibiotic gramicidin S (23). The crystal structure of
GrsA-PheA in complex with the wild-type (WT) substrate Phe
and the AMP cofactor, has been determined, thus making this
domain a suitable target for structure-based redesign. Alterna-
tive methods for the redesign of NRPS enzymes include domain
swapping/directed evolution (7) and various sequence-based
methods (24, 25).

The results from redesigning NRPS enzymes can be divided
into three categories. Category 1: switch the enzyme specificity
from the WT substrate to the target substrate, so that the
redesigned enzyme prefers the target over the WT substrate.
Category 2: improve (but not switch) the enzyme specificity for
the target substrate (in the case where the WT enzyme already
has activity for the target substrate). Category 3: create activity
for the target substrate (in the case where the WT enzyme has
no activity for the target substrate). In previous work, we
reported structure-based redesigns of the active site of GrsA-
PheA that were experimentally confirmed to improve (but not
switch) substrate specificity for Tyr (3) (category 2 results).
Those redesigns were based on older versions of our K* algo-
rithm (26), which computes partition functions over molecular
ensembles defined by continuously flexible rotamers and/or
backbones. Here, we present the application of improved ver-
sions of K* that incorporate several recently described algorith-
mic enhancements (14, 15, 27) to redesign the active site of
GrsA-PheA to improve its specificity for a set of noncognate
substrates for which the WT enzyme has little or virtually no
specificity. Detailed kinetic experiments for a set of the top-
ranked computational predictions confirm the desired improve-
ment in specificity for five noncognate substrates (Leu, Arg, Glu,
Lys, and Asp). Several of the Leu redesigns show a switch of
specificity from Phe (category 1 results). Although the WT
enzyme has virtually no activity for Arg, Glu, Lys, and Asp, the
redesigns for these substrates successfully create the desired
activity (category 3 results). Further algorithmic enhancements
for predicting mutations outside of (both close to and far away
from) the enzyme active site aiming at additional improvement
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in the substrate specificity are described and validated experi-
mentally. The mutant with the highest activity for a noncognate
substrate exhibits 1/6 of the WT enzyme:WT substrate activity,
further confirming the feasibility of our computational ap-
proach. We experimentally tested our computational predictions
and report the results below. Our results also suggest that
structure-based protein design can identify active mutants dif-
ferent from those selected by evolution and from the predictions
of other computational approaches.

Computational enzyme redesign (as opposed to de novo
enzyme design) is in some ways easier (in that the catalytic
machinery is present for the cognate substrate) and in some ways
harder (in that the algorithm must overcome the innate speci-
ficity that presumably evolved during millions of years of natural
selection). Redesign also provides an opportunity to compare
enzyme performance with the WT, providing a benchmark for
the desired activity. Finally, computational redesign to create
biocatalysts with novel specificity can leverage the best of both
worlds, by altering molecular recognition (by in silico prediction)
while still exploiting the catalytic mechanisms selected by nature.

Results
The K* algorithm (14, 26) was applied to predict mutations to the
active site of GrsA-PheA to switch the enzyme specificity from
the WT Phe toward the target noncognate substrates Leu, Arg,
Glu, Lys, and Asp. For each of the redesign targets, sets of the
top computational predictions were then visualized and selected
for experimental validation. For the Leu redesigns, additional
mutations outside of the active site were further selected by using
a computational protocol combining a self-consistent mean field
(SCMF) entropy-based method (28) with our minimized dead-
end elimination (MinDEE)/A* (14) algorithm. As with the
active-site mutations, sets of the computationally predicted
mutations outside of the active site were visualized and selected
for experimental validation. Details of the computational algo-
rithms and procedures and the experimental protocol are given

in Experimental Procedures and the supporting information (SI)
Appendix.

Steady-State Kinetic Analysis. To confirm the desired improve-
ment in specificity for the computationally predicted mutants,
we performed detailed steady-state kinetic experiments on a set
of top-ranked computational predictions for each of the target
substrates. WT and mutant PheA were overexpressed and
purified to homogeneity as shown in the SDS/PAGE (see Fig. S2
in the SI Appendix). The adenylation activity of the WT and
mutant PheA was measured by monitoring the PPi release rate
by using a continuous spectrophotometric assay (29). The assay
measures the degree of ATP consumption in an amino acid
concentration-dependent manner, which reflects the rate of the
enzyme to form and turn over aminoacyl adenylate. Among the
proteins tested, all of them, except for the T278K/A301G
mutant, showed typical hyperbolic curves with the initial velocity
approaching saturation as the concentration of amino acid
increases (see Section S3.3 and Figs. S3–S6 in the SI Appendix).
A mock control experiment in the absence of the amino acid
substrate showed a slow background ATP hydrolysis whose rate
was subtracted from the rate in the presence of the substrate. The
values of the kinetic constants kcat, Km, and kcat/Km for different
proteins with different substrates are given in Table 1.
Redesign for Leu. The WT PheA shows a rather strong specificity
to its natural substrate Phe with kcat/Km value �229-fold higher
than the noncognate amino acid Leu. A previous binding study
showed that without binding of ATP, the WT PheA can accom-
modate most of the noncognate amino acid substrates (30). Our
results, however, show that the WT protein can only activate
certain types of amino acids including Phe, Leu, and Val, but not
charged amino acids. To switch substrate specificity of PheA
from Phe to Leu, we applied the K* protein redesign algorithm
(14) by using as input the crystal structure of WT PheA in
complex with the Phe substrate and AMP (see Experimental
Procedures and Section S1.1 in the SI Appendix). The top-ranked
K* mutation sequence was T278L/A301G (Table 1). The lowest-

Table 1. Mutant enzymes with experimentally observed specificity (kcat/Km), kcat, and Km for a target substrate and the WT
substrate (Phe)

Redesign
target Enzyme Rank

Target substrate WT substrate (Phe)

kcat

min�1

Km

mM
kcat/Km

mM�1 min�1

kcat

min�1

Km

mM
kcat/Km

mM�1 min�1

Leu† T278L/A301G 1 1.16 � 0.10 0.015 � 0.002 79.49 � 13.67 3.37 � 0.08 0.097 � 0.013 34.94 � 4.76
T278M/A301G 8 2.63 � 0.24 0.130 � 0.009 20.34 � 3.11 4.25 � 0.16 0.318 � 0.009 13.35 � 0.14
A322V/A301G 9 4.18 � 0.52 0.448 � 0.019 9.34 � 1.08 3.17 � 0.2 0.195 � 0.019 16.35 � 1.3
WT‡ 28.74 � 1.58 6.98 � 1.00 4.15 � 0.36 1.73 � 0.29 0.0018 � 0.0004 951.4 � 111.2

Arg† T278D/A301G 1 0.238 � 0.007 46.43 � 4.79 0.0051 � 0.0004 0.50 � 0.02 0.153 � 0.02 3.29 � 0.38
WT ND§ ND ND

Glu† T278H/A301G 2 0.3773 � 0.035 25.49 � 5.65 0.0151 � 0.0023 0.38 � 0.03 0.027 � 0.006 14.7 � 2.48
WT ND ND ND

Lys† T278D/A301G 4 1.09 � 0.08 78.33 � 16.39 0.014 � 0.003 0.50 � 0.02 0.153 � 0.02 3.29 � 0.38
WT ND ND ND

Asp† T278K/A301G 3 �0.25¶ 16.19 � 1.32 28.93 � 1.91 0.56 � 0.06
WT ND ND ND

Leu� T278L/A301G/S447N 0.85 � 0.11 0.0054 � 0.001 159.86 � 14.98 3.36 � 0.23 0.168 � 0.027 20.38 � 3.97
I277L/T278L/A301G 1.52 � 0.09 0.013 � 0.002 119.79 � 9.75 5.21 � 0.22 0.306 � 0.004 17.00 � 0.55
V187L/T278L/A301G 1.69 � 0.22 0.011 � 0.001 155.51 � 26.71 3.24 � 0.16 0.201 � 0.036 16.43 � 2.47
I277L/T278L/A301G/S447N 0.37 � 0.04 0.0054 � 0.0007 69.07 � 13.09 2.09 � 0.10 0.282 � 0.023 7.44 � 0.67

†K* active-site mutants with their respective ranks from the 2-point mutation searches for the different substrates.
‡For clarity, the WT enzyme:WT substrate rates are shown only once.
§ND, not detectable.
¶Km and kcat/Km cannot be determined accurately because the solubility of Asp (�50 mM in water) limits the reaction velocity under the experimental condition,
in which the velocity remains linearly dependent on the concentration of the substrate.

� Bolstering mutations added to the T278L/A301G mutant with Leu as substrate.
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energy T278L/A301G structure from the K* ensemble with Leu
as substrate is shown in Fig. 1. The double-mutant protein
showed a �19-fold increase of kcat/Km with Leu and a �27-fold
decrease of kcat/Km with Phe from the WT PheA, which results
in �2.3-fold higher kcat/Km for Leu than for Phe (Fig. 2). As a
result, the double-mutant protein makes a �521-fold switch in
specificity given that the kcat/Km ratio of Leu over Phe is only
�0.0043 for WT PheA. The difference in the kcat/Km value
between the WT and the T278L/A301G PheA with Leu and Phe
is driven mainly by the Km values, which have a �465-fold
decrease with Leu and a �54-fold increase with Phe in the
T278L/A301G mutant. As a result, the Km value with Leu
becomes �6-fold lower than with Phe in T278L/A301G. The

switch suggests that the double-mutant protein now binds tighter
to Leu than to Phe. WT PheA has a rather high kcat value with
Leu whereas it is relatively low with Phe. The kcat value of the
T278L/A301G mutant with either Leu or Phe remains at the
same level as the WT PheA with Phe. The measurement of kcat
is limited by the rate of product release because of the tight
binding of the aminoacyl-AMP. Therefore, the high kcat value
with Leu for the WT protein might be caused by the loose
binding of the leucyl-AMP product given its high Km value. The
double mutant T278M/A301G is ranked 8th by K* for the Leu
redesign. This double mutant was also previously predicted by a
sequence alignment-based method and verified experimentally
to activate Leu (24). We have confirmed that the T278M/A301G
mutant has a kcat/Km value �5-fold higher with Leu and �73-fold
lower with Phe than the WT PheA. The T278M/A301G mutant
selects �1.5-fold more Leu than Phe (Fig. 2). K* also predicted
the double mutant A301G/A322V, which had a kcat/Km value
�59-fold lower with Phe and �2.2-fold higher with Leu than
WT PheA.

To further improve the specificity of the double mutant
T278L/A301G for Leu, we identified distal bolstering mutations
outside the active site by applying the computational protocol
described in Experimental Procedures and Section S1.2 in the SI
Appendix. Up to 3-point bolstering mutation search (in addition
to the T278L/A301G active-site mutant) was performed for the
mutable positions, and the top mutations V187L, I277L, and
S447N were selected and tested. All of the three triple mutants
gave 1- to 2-fold additional improvement of the specificity with
Leu over the T278L/A301G mutant. Among them, the T278L/
A301G/S447N showed an additional �2-fold higher kcat/Km
value for Leu with a �2.7-fold decrease of Km and a slightly lower
kcat. The Km values with Leu are slightly lower for both I277L/
T278L/A301G and V187L/T278L/A301G with Leu compared
with the T278L/A301G mutant, whereas their kcat values are both
slightly higher. All three triple mutants have a decreased spec-
ificity toward Phe from the T278L/A301G mutant. As a result,
the difference of kcat/Km between Leu and Phe became �7.8-fold
in T278L/A301G/S447N, �7-fold in I277L/T278L/A301G, and
�9.4-fold in V187L/T278L/A301G toward a better selection of
Leu (Fig. 2). These mutants gave a switch of �1,796-fold in
T278L/A301G/S447N, �1,614-fold in I277L/T278L/A301G, and
�2,168-fold in V187L/T278L/A301G from the WT PheA, ex-
hibiting up to 1/6 of the WT enzyme:WT substrate activity
(absolute values of kcat/Km). We next tested whether the qua-
druple mutant combining S447N and I277L could give additional
improvement. However, although its Km with Leu is as low as the
T278L/A301G/S447N triple mutant, its kcat is �2-fold lower than
any of the triple mutants and the T278L/A301G mutant. Nev-
ertheless, it showed a significant result with its Km value of Phe
close to I277L/T278L/A301G and its Km of Leu close to T278L/
A301G/S447N.
Redesign for charged amino acids. The active site of PheA shows
mainly a hydrophobic pocket and no observable activity with
charged amino acids. We next tested our redesign algorithm for
the activation of charged amino acids, Arg, Lys, Glu, and Asp by
predicting mutations to WT PheA. As expected, the algorithm
predicted mainly negatively charged side chains to bind Arg and
Lys and positively charged side chains to bind Glu and Asp in the
active site of PheA. The prediction resulted in the double mutant
T278D/A301G, which K* ranked first to bind Arg and fourth to
bind Lys. This double mutant showed small but significant
activity with both Arg and Lys under the same conditions as the
Leu redesign. The activity was improved when the Tris�HCl
concentration was lowered to 50 mM. The T278D/A301G mu-
tant showed substrate concentration-dependent kinetics with
both the Arg and the Lys substrate (see Fig. S6 C–E in the SI
Appendix). Both substrates showed much higher Km values, which
suggest a weak binding between the mutant protein and the

Fig. 1. K*-predicted structure of the lowest-energy T278L/A301G confor-
mation with Leu as substrate. Shown are the Leu substrate (CPK ball-and-stick
and gray space-filling representations), the AMP cofactor (green), the two
active-site mutations 278L and 301G (orange sticks and CPK dots), and the
other eight active-site residues, including the remaining five mutable residues
(CPK sticks and dots); C331 is hidden behind D235.

Fig. 2. Specificity ratio
�kcat/Km�Leu

�kcat/Km�Phe
for WT and mutant PheA in the Leu

redesigns. The WT PheA shows a ratio of 0.0043 with its kcat/Km values of 4.15
(mM �1 min�1) for Leu and 951.4 (mM�1 min�1) for Phe. A301G/A322V still
prefers Phe with a ratio of 0.57. T278M/A301G prefers Leu over Phe with a
ratio of 1.5, whereas T278L/A301G shows a ratio of 2.3. The three triple
mutants have ratios of 7.8 for T278L/A301G/S447N, 7.0 for I277L/T278L/A301G,
and 9.4 for V187L/T278L/A301G. The quadruple mutant has a ratio of 9.3.
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substrates. Their kcat values with this double mutant are also
severalfold lower (�7-fold for Arg and �1.5-fold for Lys) than
the WT PheA with Phe. Among the top-scored sequences to bind
Glu and Asp, T278H/A301G was ranked 2nd to bind Glu, and
T278K/A301G was ranked 3rd to bind Asp. Both mutants
showed substrate concentration-dependent kinetics with their
substrates (see Figs. S5 E and F and S6 A and B in the SI
Appendix). The rate of the T278K/A301G increased linearly
without approaching saturation as the concentration of Asp
approached its maximum solubility. As a result, only a lower
bound on kcat was determined. The three double mutants
T278D/A301G, and T278H/A301G, while acquiring new sub-
strate activity, showed decreased specificity for Phe. Unlike the
increase of kcat for Phe observed in all of the Leu-redesigned
mutants, the kcat values are significantly lower in T278D/A301G
and T278H/A301G. The lower kcat value with the natural sub-
strate Phe suggests that introduction of charged side chains in the
active site might have an influence on the enzyme catalysis. A
low-energy T278D/A301G structure from the K* ensemble with
Arg as substrate is shown in Fig. 3. Detailed structural analysis
of T278L/A301G with Leu and T278D/A301G with Arg can be
found in Section S2.1 in the SI Appendix.

Discussion
The adenylation domain of NRPS has been known to play a
major role in the recognition of the amino acid substrates (30).
Several studies have shown that the substrate specificity of the
adenylation domain can be modified by the mutation of the
active-site residues (3, 24, 31). By using a multiple sequence
alignment approach to redesign the substrate specificity of
GrsA-PheA, Stachelhaus et al. (24) successfully improved the
activity of the enzyme for the noncognate amino acid Leu with
the introduction of a double mutation, T278M/A301G, and
altered the substrate specificity of an aspartate-activating do-
main AspA to Asn by a single mutation H322E in the active site.
The sequence-based approach identifies active-site residues
important for the substrate specificity by comparing the corre-
sponding moieties among different adenylation domains. How-
ever, its accuracy depends heavily on the number and diversity
of available sequences. In contrast, our K* algorithm uses the
structure of the PheA domain as well as an amino acid rotamer
library and a molecular mechanics energy function as inputs. For

a given amino acid substrate, the algorithm was able to search a
space of thousands of sequences with hundreds of millions of
conformations (see Section S1.1.3 in the SI Appendix). By
computing the partition functions over the conformational en-
sembles, the K* algorithm scores sequences based on their
approximation to the binding constant. As a result, the top-
scored sequences were expected to have a lower Kd and conse-
quently a lower Km for the target substrate. The feasibility of the
K* algorithm was shown by the lower Km value with Leu of the
top-scored mutants, T278L/A301G, T278M/A301G, and A301G/
A322V.

Sequence-based methods are limited to the active-site signa-
ture motif. Hence, the sequence alignment approach can only
identify regions (such as the active site) where a significant
sequence homology exists. It has been suggested that distal
residues outside the active site might play critical roles in
stabilizing protein function (32). This idea was incorporated into
our computational protocol with the identification of the bol-
stering mutations outside the active site. The addition of the
predicted bolstering mutations in the Leu redesigns had a
significant impact on the substrate specificity of the enzyme.
Because residue 277 is adjacent to the active-site mutation
T278L, the mutation I277L could directly affect the conforma-
tion of the enzyme active site, also affecting the substrate
specificity. Residues 187 and 447, however, are distal from the
ligand-binding site, and their impact is likely caused by indirect
and/or long-range interactions. Interestingly, structural analysis
of the lowest-energy S447N conformation predicted by the
MinDEE/A* algorithm (14) shows that the Asn side chain
reaches across a solvent channel inside the protein, making a
hydrogen bond with backbone carbonyl oxygen of H344 (Fig. S1
in the SI Appendix). The precise effect of these distal mutations
remains unclear. To understand their roles in the protein
function requires further experiments, including X-ray and
NMR structural studies.

The ability of the algorithm to search a large space of
sequences and conformations enables us to redesign the active
site for a diverse set of substrates. We tested this capability of the
algorithm by predicting mutations for charged amino acids
whose activity was not found in PheA. To stabilize the charged
side chain of the substrates, the algorithm introduced polar or
charged residues in the active site, which resulted in our suc-
cessful mutations, T278D/A301G to bind Lys and Arg, T278H/
A301G to bind Glu, and T278K/A301G to bind Asp. Interest-
ingly, residue positions 278 and 301 were again chosen by the
algorithm but with a different residue type at position 278. A
previous report has shown that mutation at a single key position
His-322 (to Glu-322) in the active site of the adenylation domain
AspA from the surfactin synthetase B is sufficient to obtain the
specificity switch from Asp to Asn (31). This finding, combined
with our results, suggests that in GrsA-PheA, positions 278 and
301 might play key roles in the recognition of the substrate.
Structural analysis of the K* models of the mutants suggests that
Gly-301 might alleviate steric clashes to bind different substrates
(see Section S2.1 in the SI Appendix). Residue 278 might be
involved in direct interactions with the substrate side chain.

A comparison of our computationally predicted mutant active
sites with a set of NRPS enzymes selected by evolution showed
that although the amino acid identities at mutated positions
were found as constituents of longer signature sequences, none
of our exact mutant active sites could be found in that enzyme
set. Moreover, a comparison with the predictions from two
sequence-based methods showed that our structure-based
method could identify active mutants different from the
sequence-based predictions. Details of these comparisons can be
found in Section S2.2 in the SI Appendix.

The mechanism of substrate recognition by the adenylation
domain of NRPS has been puzzling. Luo et al. (30) claimed that

Fig. 3. K*-predicted structure of the second lowest-energy T278D/A301G
conformation with Arg as substrate. Shown are the Arg substrate and the two
active-site mutations 278D and 301G (CPK), the other active-site residues
(cyan), and the AMP cofactor (gray). Interactions between the substrate side
chain with 278D (the distance between N�1 (Arg) and O�2 (278D) is 2.92 Å; the
distance between N�2 (Arg) and O�1 (278D) is 3.15 Å), and the substrate
backbone with D235 and K517 is shown with dashed yellow lines. The viewing
angle is chosen to show side-chain interactions between Arg and 278D.

4 of 6 � www.pnas.org�cgi�doi�10.1073�pnas.0900266106 Chen et al.

http://www.pnas.org/cgi/data/0900266106/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0900266106/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0900266106/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0900266106/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0900266106/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0900266106/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0900266106/DCSupplemental/Appendix_PDF


the discrimination of the amino acid substrate begins when the
transition state is formed during the catalysis. Stevens et al. (3)
suggested that a conformational change toward a catalytically
relevant intermediate occurs in the adenylation process of PheA.
In our results, the double mutant T278L/A301G dramatically
lowers the value of Km for the noncognate amino acid Leu from
the WT PheA, requiring changes to only two residues in the
active site. It is therefore intriguing to see whether there exists
any interaction between Leu-278 and Gly-301 in binding of Leu.
Hence, we then investigated the double mutant T278L/A301G
and the single mutants T278L and A301G by analyzing their free
energy change upon binding to Phe and Leu. Detailed free
energy calculations are described in Section S3.6 in the SI
Appendix, and the kinetic constants as well as difference in free
energy are listed in Table S8 in the SI Appendix. The result shows
that the WT protein has a difference in binding energy of 3.22
kcal/mol in favor of Phe whereas the energy difference becomes
0.49 kcal/mol in favor of Leu in the T278L/A301G mutant. The
free energy barrier required for the discrimination of Phe and
Leu in the WT protein was decreased to favor Leu in the mutant
protein. Moreover, a coupling energy (��Gint) of 1.69 kcal/mol
was observed when comparing the free energy difference of the
T278L/A301G mutant (��GWT � T278L/A301G) and the two cor-
responding single mutants T278L (��GWT � T278L) and A301G
(��GWT � A301G) in binding of Leu. The coupling energy sug-
gests that the two active-site residues, Leu-278 and Gly-301,
might interact to provide a favorable conformation for the
recognition of the Leu substrate.

Using our suite of structure-based protein design algorithms,
we successfully redesigned GrsA-PheA for a set of noncognate
substrates. A switch of substrate specificity from Phe toward Leu
was observed for several of the computationally predicted
mutants. Further redesigns for Arg, Glu, Lys, and Asp were also
successful experimentally and accomplished the task of creating
novel substrate activity (virtually nonexistent in WT GrsA-
PheA), although the preferred substrate for those mutants was
still Phe. The incorporation of an explicit negative design
procedure will be important for predicting active mutants that
show the desired switch of substrate specificities. However, for
in vitro or biotechnology applications, it would be possible to use
the designed mutants for charged amino acid adenylation by
controlling the input substrates to exclude Phe. More extensive
investigation of the effect of bolstering mutations on the sub-
strate specificity of the redesigned enzymes, could be an impor-
tant step toward a general purely computational algorithm for
predicting enzymes with high activity by identifying mutations
anywhere in the protein, both proximal and distal to the ligand-
binding site.

Experimental Procedures
Computational Redesign. Active-site mutation prediction. For a given protein–
substrate complex, the K* algorithm computes partition functions over con-
formational ensembles, where the contribution of each conformation to the
partition function is weighted by using Boltzmann probabilities. The ratio of
the partition functions for the bound complex and unbound protein and
ligand is then used to compute a provably accurate �-approximation to the
binding constant for the given protein–substrate complex. K* scores were
computed for each candidate protein sequence with the target substrate;
sequences with higher K* scores are predicted to have better specificity for the
target substrate. For computational efficiency, K* uses the MinDEE (14) and
the backbone dead-end elimination (BD) (15) algorithms as an initial pruning
filter, and the A* branch-and-bound search (33) for the subsequent confor-
mation enumeration (14). MinDEE and BD are DEE-based algorithms that,
unlike previous DEE algorithms (34, 35), guarantee the identification of the
global minimum energy conformation for, respectively, a model with contin-
uously flexible rotamers and a flexible backbone. Combined with A*, MinDEE
and BD also output conformations and sequences in the precise order in which
they are ranked by the model, so that no low-energy solutions are missed by
the algorithm.

Next, we describe some of the mutation search parameters used in the K*

redesigns of GrsA-PheA. Complete details of the computational procedure
and the algorithm parameters can be found in Section S1.1 in the SI Appendix.
K* runs (with subsequent experimental validation) were performed for the
following substrates: Arg, Glu, Leu, Lys, and Asp. The crystal structure of
GrsA-PheA [Protein Data Bank (PDB) ID code 1amu (23)] was used in the
computational redesigns. The seven active-site residues 236, 239, 278, 299,
301, 322, and 330 were modeled by using continuously flexible rotamers and
were allowed to mutate. In addition, the AMP cofactor and a steric shell
consisting of all residues within 8 Å from the ligand or within 3 Å from any of
the seven active-site residues were included as part of the input structure. The
ligand substrate was also modeled by using continuously flexible rotamers
and was allowed to rotate/translate. Rotamers were obtained from the Pen-
ultimate Rotamer Library modal values (11). The energy function consisted of
the Amber electrostatic, vdW, and dihedral terms (36) and the EEF1 pairwise
implicit solvation energy term (37). A distance-dependent dielectric of 6 and
a solvation-energy scaling factor of 0.8 were used. Conformations with an
initial steric overlap of �1.5 Å were pruned. All software is available open-
source upon publication.
Bolstering mutation prediction. The K* algorithm allows us to identify mutations
within the active site of an enzyme. The kinetics experiments (Results) showed
these K*-predicted mutations yielded highly active mutants for Leu. We then
investigated whether additional improvement in the Leu specificity could be
achieved by introducing additional mutations outside of the active site.
Previously, in other design protocols, this was done by performing multiple
rounds of directed evolution on the active-site mutants (9). As an alternative,
we applied a purely computational approach for predicting mutations outside
of the enzyme active site. As a starting point for these computational exper-
iments, we selected the highest-activity K* mutant for Leu (T278L/A301G). We
then applied a SCMF entropy-based method (28) combined with our
MinDEE/A* (14) algorithm to predict mutations both close to and far away
from the enzyme active site to obtain further improvement in the target
substrate specificity. The SCMF entropy-based method heuristically selects
residue positions, anywhere in the protein, that may be tolerant to mutation.
Mutations to these residue positions are then predicted by using the
MinDEE/A* algorithm. We refer to these mutations as ‘‘bolstering.’’ The
addition of the bolstering mutations aims at further stabilizing the mutant
enzyme and may counteract a possible destabilizing effect from the introduc-
tion of the active-site mutations. Details of the computational redesign pro-
cedure for bolstering mutations can be found in Section S1.2 in the SI Appen-
dix. The active-site mutations plus bolstering mutations were then tested by
creating mutant proteins containing both sets of mutations, and measuring
the kinetic parameters.

Experimental Redesign. Materials. Amino acid substrates, compounds, and
enzymes for the pyrophosphate release assay were purchased from Sigma–
Aldrich. Vector pQE60 and Escherichia coli strain M15 were purchased from
Qiagen. Plasmid pQE60 containing WT and A301G mutant PheA genes from
Bacillus brevis (GI: 39366) were obtained as described in ref. 3.
Mutagenesis of mutant PheA. Mutagenesis was performed by using the
QuikChange site-directed mutagenesis system (Stratagene) in accordance
with the manufacturer’s instructions with the primers summarized in the
Table S6 in the SI Appendix. Preparation of the plasmid DNA was done in E. coli
DH5� following standard procedures. All constructs were confirmed by DNA
sequencing at Duke University DNA Analysis Facility.
Expression and purification. Vector pQE60 containing constructs of WT or
mutant PheA with a C-terminal His tag was transformed into E. coli M15
(pREP4) cells for expression. The proteins were expressed by induction of
midlog cells (OD �0.8) with 0.2 mM IPTG and an addition of 10 mM MgCl2
overnight at 18 °C. The double mutant T278L/A301G and the triple mutants
T278L/A301G/S447N, I277L/T278L/A301G, and V187L/T278L/A301G were in-
duced with 0.05 mM IPTG and expressed at 18 °C overnight to increase protein
solubility. Double mutants T278D/A301G, T278H/A301G, and T278K/A301G
and the quadruple mutant I277L/T278L/A301G/S447N were expressed at 16 °C
with 0.05 mM IPTG. In a typical preparation of 2 L of culture, 7-g cell pellets
were resuspended in 35 mL of buffer A [100 mM Tris�HCl (pH 7.5), 250 mM
NaCl, and 5 mM Tris(2-carboxyethyl)phosphine (TCEP)] supplemented with a
protease inhibitor mixture. The cells were lysed by a French press, and cell
debris was removed by centrifugation at 20,000 	 g for 30 min. The resulting
supernatant was incubated with Ni–nitrotriacetic acid–agarose (10 mL) in
buffer B [50 mM Tris�HCl (pH 8.0), 400 mM NaCl, 20 mM imidazole, 0.5 mM
TCEP] at 4 °C for 1 h. The agarose was then washed extensively with buffer B.
The His-tagged proteins were eluted with 400 mM imidazole (pH 6.8) and
further purified by a Superdex 200 gel filtration chromatography (GE Health-
care) in buffer C [50 mM Tris�HCl (pH 7.5), 1 mM TCEP]. The purified proteins
(�95% pure by SDS/PAGE) were concentrated to �20 mg/mL by using an
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Amicon Ultra-15 concentrator with the addition of glycerol (10% final) and
rapidly frozen by liquid N2 for storage at �80 °C.
PPi release assay. The rate of PPi release was measured by using a coupled,
continuous, spectrophotometric assay (29). In the reaction of 100 �L total
volume, PheA or mutants (0.1–1 �M) were incubated at 25 °C with varying
concentrations of amino acids (1 �M– 64 mM) in buffer containing 100 mM
Tris�HCl (pH 7.5), 1 mM uridine diphosphate-glucose, 375 �M glucose
1,6-bisphosphate, 1 mM �-nicotinamide adenine dinucleotide, 10 mM
MgCl2, 2 mM adenosine 5
-triphosphate, 5 mM DTT, 2 units/mL uridine-5
-
diphosphoglucose pyrophosphorylase, 4 units/mL phosphoglucomutase,
4 units/mL glucose-6-phosphate dehydrogenase. Mutants T278D/A301G,
T278H/A301G, and T278K/A301G were assayed in 50 mM Tris (pH 7.5).

Reactions were initiated by the addition of the enzymes after a 10-min
incubation to allow the removal of any contaminating PPi. The absorbance
at 340 nm (NADH�340 � 6,317 M�1 cm�1) was monitored by using an Agilent
8453 spectrophotometer. Substrate concentrations covering 0.2–5 Km were
used to determine the complete steady-state curve. The initial velocity of
each substrate concentration was determined by comparison with mock-
treated enzyme and fitted with the Michaelis–Menten equation to obtain
kcat and Km.
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