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5 Supplementary Material

5.1 Nativefeature value predictor

Let X, Xo, ..., X, be all features from a single class (for example, all torééatures). Let}, 2, ..., " represent
the possible values of featu’g, and letz} be the native value. Each feature vah:je—for instance, bin “B” of torsion
angle 34 for protein 1dcj, or the beta barrel topology fortgirm lacf—has a corresponding numeric property vector
[Psamd @), lowE(z), minE(z/), . . ] consisting of a mix of energy and distribution statistiasnfrthe initial round of
Rosetta models. Brief descriptions of the properties weansegiven in Table | of the main article, along with the
predictive power of each (as measured by the percentagdio¢ fi@ature values from all proteins in our benchmark
that can be identified using this property alone). A justif@afor our choice of properties is given in the next section
Note that even thougsampis in some sense “special,” as it gives the prior belief distion to be updated, it is
treated just like the other properties for the purpose optieelictor.

Some properties are transformed, either to make their scgyaparable to one another or for reasons of mathemat-
ical convenience; for instance, tlﬁeamp(x{) term is transformed tta)g(Psam,{x{)). Let f (x{) be thek!” transformed
property ofx-z and Iet@(w{) be the vector of all single transformed property terms aedt thairwise combinations.
We compute the dot product between a weight vegtand ® () via 8'®(x!) = 37, . B fi(ad) fw (2]) +

>k ﬁkfk(xg). The presence of the pairwise combinations of featuresvallour model to take joint effects into



account. Given a weight vectgr, the predicted probability thatf is native in our model is

eBie(al)
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The form of the predictor allows it to outputsamp unmodified, given the proper setting of the weights (one for
log(Psamp and zero for all others), so it is theoretically possibletfu trained predictor to make no changes to the
Rosetta sampling distribution. This is why we transfaPggmpto log(Psamp) in the property vector.

The free parameters in the predictor are the componentg afdight vector3, which must be fitted by maximiz-
ing an objective function. Rather than fit some standard oreasf belief accuracy, we aim to directly maximize the
predictor’s effectiveness as input to our resampling meitiis outlined in Section 2.3 of the main article, the resam-
pling step of our algorithm attempts to modify Rosetta sed@ocsample features according to the distributiggeq
instead of according tésamp Accordingly, we use as an objective function gampling efficiencef Fyeq, Which
we define ag ", Poed(z]), the estimated probability of encountering a fully natitressture in a single Rosetta run
with feature distributionP,eq. The inverse of this quantity can be regarded as an apprdiximagnoring correlations
between features, of the expected number of Rosetta sanagjeised to produce a native-like structure. In order to
incorporate training data from multiple proteins into tHgeztive function, the sampling efficiencies of each of the
proteins in the training set are multiplied (in fact, sinoework on a log scale for numerical stability, their logamith
are summed).

The fitted weights for the various predictors (trained on chenark of 28 proteins) are shown in Table 5.1.

5.2 Resampling strategies

The probability of seeing the fully native feature strixigin any single Rosetta trajectory is, under our independence
model, PresamdX*) = Hle Presamd Xi = x7). But we are not sure, a priori, of which values are in fact thgve
ones. Under our belief distributiafyeq the chance thatis the native feature string is (making the same indeperalenc
assumption for beliefs as for sampling distributiofs)q(x) = [T\, Poed(z;). Theexpectecthance of seeing the
native in any given sample, with respect to our beliefs,@nth,, Fored(X) PresamdX). Maximization of this expectation
with respect taPesamp Subject to normalization constraints, can be solved isagddorm using a standard Lagrangian
multiplier argument. The maximum is given BesamdX) = 1 for X = argmax Pyred(X) and0 elsewhere. Given just
a single sample, the optimal strategy is to try our single gesss for the native feature string.

At the other extreme, in the limit of infinite samples, the mba of sampling feature stringat least once is the
step functionZ (PesamdX) > 0), which takes the valué if Pesamdx) > 0 and0 otherwise. The expected chance
of seeing a native structure is th&n, Pored(X)Z(FPresamdX) > 0). This expectation reaches its optimum valuel of

wheneverPesamdX) > 0 for all x such thatPyeq(X) > 0. For very large numbers of samples, the optimum strategy is



Native feature value predictors

Torsion predictor Secondary structure predictor
| Pamp frag lowE  minE loop | Pamp MinE  lowE psipred  jufo
Psamp | 111 -0.16 -0.17 -0.43 -0.083 Psamp | 1.36 -0.35 -0.29 235 -0.24
frag 051 035 -0.022 -0.16 minE -0.27 -0.23 1.39 0.081
lowE -0.11  0.094 0.21 lowE 0.43 0.28 -0.38
minE -0.90 -0.24 psipred 1.10 -0.54
loop 0.29 jufo 0.06
Topology predictor Register predictor
| Peamp co lowE ming" | Pamp  mMIinE  lowE"  bulge
Pemp | 149 -157 082  -1.37 P3| 053 -0.042 0.13  1.06
co -0.22  -0.043 -1.45 minE -0.86 0.29 0.50
lowE 419 211 lowE™" 0.55 0.074
ming" 2.27 bulge 0.50

Contact predictor
| P&n, lowE" edgedist oddpleat

pa 1 1.05 2.57 1.79 0.00038
IowEa'P -0.29 1.28 -0.48
edgedist -0.14 -0.12
oddpleat -0.45

Table I1I: Predictor weights for the five feature classes.ights for individual feature value properties are on the
diagonal, weights for pairwise terms are elsewhere.

to spread sampling as evenly as possible. If, for instaneane permitted as many samples as there are joint feature
strings, the optimal strategy is to try each string exacatigeo
The strategy of settingesamp= FPpred Maximizesy _, Ppred(X) log(PesamdX)), in which the termog( PesamdX)) is
intermediate between the objective functidhsamgdx), which grows linearly in the value dfesamp andZ ( Presamd X) #
0), which jumps immediately to. Maximizing) ", Pored(X) 1og PresamdX) is equivalentto minimizing . Pored(X) log(1/ PresamdX)),

the expected number of samples required to find a fully né¢igure string.

5.3 Impact of energy function inaccuracy

Because the weights in the predictor are learned from exa@snpley take into account the unreliability of the energy
function as an indicator of nativeness, particularly algsihe energy funnel near the native conformation. Our re-
sampling algorithm therefore has the potential to be lesservable to false valleys in the energy function than other
resampling methods. We can roughly identify proteins inlitbachmark for which conformations in false valleys
received the lowest energies by looking at the differen¢eé&en the RMSD of the lowest-energy models and of the
lowest-RMSD models. There were eight proteins from our herark in which the median RMSD of the 25 lowest-
energy models from the initial round was at leaktv@orse than the 1% RMSD of the population at large. The awverag
improvement under resampling of the RMSD of the first preolictor these targets was SEQCompared to an aver-

age 1.7A for all targets, and the average improvement of the bedivefprediction was 1.9%, compared to 0.4%
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Figure 5: Energy versus RMSD for input and resampling rodfod4nOu. Each point represents a model produced
by Rosetta search. (a) Plot of energy versus RMSD from n&tiverodels used as input data for the native feature
value predictor. Models fall into several distinct clusteFhe largest and lowest-energy clusters are far from ttieena
conformation. (b) Plot of energy versus RMSD for the modetampled using the output of the predictor. The cluster
nearest to the native conformation is now the largest, aclddes the lowest-energy models.

for all targets.

The resistance of our methods to energy pathologies islyegabarent in the case of 1n0u, a target for which most
Rosetta sampling concentrated on an incorrect beta topoldte lowest energy first-round models are concentrated
at about 16 (Figure 5(a)). Only 2% of the first-round models have theiveatopology. However, the predictor
still identifies the native topology with 48% confidence, sdtie resampling round, 48% of models have the native

topology (Figure 5(b)), including the lowest-energy madel



