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5 Supplementary Material

5.1 Native feature value predictor

LetX1, X2, . . . , Xn be all features from a single class (for example, all torsionfeatures). Letx1
i , x

2
i , . . . , x

mi

i represent

the possible values of featureXi, and letx∗
i be the native value. Each feature valuexj

i —for instance, bin “B” of torsion

angle 34 for protein 1dcj, or the beta barrel topology for protein 1acf—has a corresponding numeric property vector

[Psamp(x
j
i ), lowE(xj

i ), minE(xj
i ), . . .] consisting of a mix of energy and distribution statistics from the initial round of

Rosetta models. Brief descriptions of the properties we useare given in Table I of the main article, along with the

predictive power of each (as measured by the percentage of native feature values from all proteins in our benchmark

that can be identified using this property alone). A justification for our choice of properties is given in the next section.

Note that even thoughPsamp is in some sense “special,” as it gives the prior belief distribution to be updated, it is

treated just like the other properties for the purpose of thepredictor.

Some properties are transformed, either to make their ranges comparable to one another or for reasons of mathemat-

ical convenience; for instance, thePsamp(x
j
i ) term is transformed tolog(Psamp(x

j
i )). Letfk(xj

i ) be thekth transformed

property ofxj
i and letΦ(xj

i ) be the vector of all single transformed property terms and their pairwise combinations.

We compute the dot product between a weight vectorβ andΦ(xj
i ) via βtΦ(xj

i ) =
∑

k 6=k′ βk,k′fk(xj
i )fk′(xj

i ) +

∑
k βkfk(xj

i ). The presence of the pairwise combinations of features allows our model to take joint effects into
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account. Given a weight vectorβ, the predicted probability thatxj
i is native in our model is

Ppred(x
j
i ) =

eβtΦ(xj

i
)

∑mi

j′=1 eβtΦ(xj′

i
)
.

The form of the predictor allows it to outputPsamp unmodified, given the proper setting of the weights (one for

log(Psamp) and zero for all others), so it is theoretically possible forthe trained predictor to make no changes to the

Rosetta sampling distribution. This is why we transformPsampto log(Psamp) in the property vector.

The free parameters in the predictor are the components of the weight vectorβ, which must be fitted by maximiz-

ing an objective function. Rather than fit some standard measure of belief accuracy, we aim to directly maximize the

predictor’s effectiveness as input to our resampling method. As outlined in Section 2.3 of the main article, the resam-

pling step of our algorithm attempts to modify Rosetta search to sample features according to the distributionPpred

instead of according toPsamp. Accordingly, we use as an objective function thesampling efficiencyof Ppred, which

we define as
∏n

i=1 Ppred(x
∗
i ), the estimated probability of encountering a fully native structure in a single Rosetta run

with feature distributionPpred. The inverse of this quantity can be regarded as an approximation, ignoring correlations

between features, of the expected number of Rosetta samplesrequired to produce a native-like structure. In order to

incorporate training data from multiple proteins into the objective function, the sampling efficiencies of each of the

proteins in the training set are multiplied (in fact, since we work on a log scale for numerical stability, their logarithms

are summed).

The fitted weights for the various predictors (trained on a benchmark of 28 proteins) are shown in Table 5.1.

5.2 Resampling strategies

The probability of seeing the fully native feature stringx∗ in any single Rosetta trajectory is, under our independence

model,Presamp(x∗) =
∏k

i=1 Presamp(Xi = x∗
i ). But we are not sure, a priori, of which values are in fact the native

ones. Under our belief distributionPpred, the chance thatx is the native feature string is (making the same independence

assumption for beliefs as for sampling distributions)Ppred(x) =
∏n

i=1 Ppred(xi). Theexpectedchance of seeing the

native in any given sample, with respect to our beliefs, is then
∑

x Ppred(x)Presamp(x). Maximization of this expectation

with respect toPresamp, subject to normalization constraints, can be solved in closed form using a standard Lagrangian

multiplier argument. The maximum is given byPresamp(x̂) = 1 for x̂ = argmaxPpred(x) and0 elsewhere. Given just

a single sample, the optimal strategy is to try our single best guess for the native feature string.

At the other extreme, in the limit of infinite samples, the chance of sampling feature stringx at least once is the

step functionI(Presamp(x) > 0), which takes the value1 if Presamp(x) > 0 and0 otherwise. The expected chance

of seeing a native structure is then
∑

x Ppred(x)I(Presamp(x) > 0). This expectation reaches its optimum value of1

wheneverPresamp(x) > 0 for all x such thatPpred(x) > 0. For very large numbers of samples, the optimum strategy is
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Native feature value predictors

Torsion predictor
Psamp frag lowE minE loop

Psamp 1.11 -0.16 -0.17 -0.43 -0.083
frag 0.51 0.35 -0.022 -0.16

lowE -0.11 0.094 0.21
minE -0.90 -0.24
loop 0.29

Secondary structure predictor
Psamp minE lowE psipred jufo

Psamp 1.36 -0.35 -0.29 2.35 -0.24
minE -0.27 -0.23 1.39 0.081
lowE 0.43 0.28 -0.38

psipred 1.10 -0.54
jufo 0.06

Topology predictor
Psamp co lowE minEall

Psamp 1.49 -1.57 0.82 -1.37
co -0.22 -0.043 -1.45

lowE 4.19 -2.11
minEall 2.27

Register predictor
P

all
samp minE lowEall bulge

P
all
samp 0.53 -0.042 0.13 1.06

minE -0.86 0.29 0.50
lowEall 0.55 0.074

bulge 0.50
Contact predictor

P
all
samp lowEall edgedist oddpleat

P
all
samp 1.05 2.57 1.79 0.00038

lowEall -0.29 1.28 -0.48
edgedist -0.14 -0.12
oddpleat -0.45

Table III: Predictor weights for the five feature classes. Weights for individual feature value properties are on the
diagonal, weights for pairwise terms are elsewhere.

to spread sampling as evenly as possible. If, for instance, we are permitted as many samples as there are joint feature

strings, the optimal strategy is to try each string exactly once.

The strategy of settingPresamp= Ppred maximizes
∑

x Ppred(x) log(Presamp(x)), in which the termlog(Presamp(x)) is

intermediate between the objective functionsPresamp(x), which grows linearly in the value ofPresamp, andI(Presamp(x) 6=

0), which jumps immediately to1. Maximizing
∑

x Ppred(x) log Presamp(x) is equivalent to minimizing
∑

x Ppred(x) log(1/Presamp(x)),

the expected number of samples required to find a fully nativefeature string.

5.3 Impact of energy function inaccuracy

Because the weights in the predictor are learned from examples, they take into account the unreliability of the energy

function as an indicator of nativeness, particularly outside the energy funnel near the native conformation. Our re-

sampling algorithm therefore has the potential to be less vulnerable to false valleys in the energy function than other

resampling methods. We can roughly identify proteins in thebenchmark for which conformations in false valleys

received the lowest energies by looking at the difference between the RMSD of the lowest-energy models and of the

lowest-RMSD models. There were eight proteins from our benchmark in which the median RMSD of the 25 lowest-

energy models from the initial round was at least 3Å worse than the 1% RMSD of the population at large. The average

improvement under resampling of the RMSD of the first prediction for these targets was 3.59Å, compared to an aver-

age 1.77̊A for all targets, and the average improvement of the best-of-five prediction was 1.97̊A, compared to 0.42̊A
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Figure 5: Energy versus RMSD for input and resampling roundsfor 1n0u. Each point represents a model produced
by Rosetta search. (a) Plot of energy versus RMSD from nativefor models used as input data for the native feature
value predictor. Models fall into several distinct clusters. The largest and lowest-energy clusters are far from the native
conformation. (b) Plot of energy versus RMSD for the models resampled using the output of the predictor. The cluster
nearest to the native conformation is now the largest, and includes the lowest-energy models.

for all targets.

The resistance of our methods to energy pathologies is readily apparent in the case of 1n0u, a target for which most

Rosetta sampling concentrated on an incorrect beta topology. The lowest energy first-round models are concentrated

at about 10̊A (Figure 5(a)). Only 2% of the first-round models have the native topology. However, the predictor

still identifies the native topology with 48% confidence, so in the resampling round, 48% of models have the native

topology (Figure 5(b)), including the lowest-energy models.
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