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A human phenome-interactome network of protein 
complexes implicated in genetic disorders
Kasper Lage1,6, E Olof Karlberg1,6, Zenia M Størling1, Páll Í Ólason1, Anders G Pedersen1, Olga Rigina1,
Anders M Hinsby1, Zeynep Tümer2, Flemming Pociot3,4, Niels Tommerup2, Yves Moreau5 & Søren Brunak1

We performed a systematic, large-scale analysis of human 
protein complexes comprising gene products implicated in many 
different categories of human disease to create a phenome-
interactome network. This was done by integrating quality-
controlled interactions of human proteins with a validated, 
computationally derived phenotype similarity score, permitting 
identification of previously unknown complexes likely to be 
associated with disease. Using a phenomic ranking of protein 
complexes linked to human disease, we developed a Bayesian 
predictor that in 298 of 669 linkage intervals correctly ranks 
the known disease-causing protein as the top candidate, and in 
870 intervals with no identified disease-causing gene, provides 
novel candidates implicated in disorders such as retinitis 
pigmentosa, epithelial ovarian cancer, inflammatory bowel 
disease, amyotrophic lateral sclerosis, Alzheimer disease, type 
2 diabetes and coronary heart disease. Our publicly available 
draft of protein complexes associated with pathology comprises 
506 complexes, which reveal functional relationships between 
disease-promoting genes that will inform future experimentation.

Several diseases with overlapping clinical manifestations are caused by 
mutations in different genes that are part of the same functional module. 
In such instances, the clinical overlap can be attributed to mutations in 
single genes rendering the complete module dysfunctional1. This concept 
has been applied to searches for disease genes by several computational 
methods, including, for example, schemes based on Gene Ontology 
annotations and gene expression data2–12. The advent of proteome-wide 
interaction screens in model organisms has revealed the modularity of 
the cellular interactome and that many genes exert their functions as 
components of protein complexes such as cellular machines, rigid struc-
tures, dynamic signaling or metabolic networks and post-translational 
modification systems13.

Analyses involving model organisms, and more recently humans, show 
that direct and indirect interactions often occur between protein pairs 
responsible for similar phenotypes14–22. In humans this relationship can, 
for example, be observed in various inherited ataxias20. These findings 
hint at the widespread association of protein complexes with human 
disease and the likelihood that defects in several proteins, alone or in 
combination, can cause overlapping clinical manifestations. Systematic 
investigation of these complexes would help to elucidate cellular mecha-
nisms underlying various disorders and prioritize positional candidates 
identified, for example, by linkage analysis or association studies.

Our strategy is predicated on the simple assumption that mutations 
in different members of a protein complex (predicted from protein-pro-
tein interaction data) lead to comparable phenotypes, the similarities of 
which can be automatically recognized by text mining. Computational 
integration of phenotypic data with a high-confidence interaction net-
work of human proteins is required to perform such an analysis for many 
human diseases simultaneously. This creates a phenome-interactome net-
work. However, there is no single standard vocabulary for phenotypic 
annotation in humans. Furthermore, protein interaction data are noisy, 
are scattered among different databases and contain many false positive 
interactions23. Additionally, only a few large-scale protein interaction 
studies have been finalized for the human proteome24,25 rendering the 
coverage of human protein interaction data too low for a systematic study 
of protein complexes associated with human disease. Thus, extensive data 
integration, including conservative incorporation of protein interaction 
data from model organisms, streamlining of human phenotype data and 
thorough testing of the resulting method, is required for the systematic 
investigation of protein complexes associated with human disease.

RESULTS
Construction of a quality-controlled interaction network of human pro-
teins and implementation of a thoroughly benchmarked computational 
phenotype similarity score allowed us to analyze a human phenome-
interactome network. The results show that the 506 disease-associated 
protein complexes span a wide range of inherited disease categories. We 
furthermore trained a Bayesian predictor to prioritize candidates in 870 
linkage intervals by assigning candidates to protein complexes and rank-
ing these complexes based on the phenotypes associated with its members 
by text mining. The key steps in our approach are illustrated in Figure 
1. Four disease-specific case studies are presented to illustrate how the 
complexes can be exploited to generate novel hypotheses, which directly 
suggest specific validation experiments involving particular patient-
derived materials.
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Measuring phenotype similarity scores
Text mining techniques are well suited for investigating phenotype-
genotype relationships8,11,12,14,26–28. Inspired by such techniques, we 
created a scoring scheme that quantitatively measures the phenotypic 
overlap of Online Mendelian Inheritance in Man (OMIM)29 records 
(Supplementary Fig. 1 online). For every record we created a phenotype 
vector consisting of weighted medical terms present in the record, which 
represent the phenotype described in that particular record. The parsing 
of the OMIM records was done using MetaMap Transfer30 (MMTx), 
a program that maps text to the Unified Medical Language System 
(UMLS)31 metathesaurus (MTH) concepts. The pairwise phenotypic 
overlap between records was quantified by calculating the cosine of the 
angle between normalized vector pairs32, which is a standard measure 
in such analyses. Essentially, the method amounts to detecting words 
(from the UMLS vocabulary) that are (i) common to the description 
of the two phenotypes and (ii) do not occur too frequently among all 
phenotype descriptions and thus are informative about the phenotype 
under consideration.

Even though our approach is comparable to successful methods 
reported in other contexts28, there are a number of problems surrounding 
the use of MMTx and UMLS33, and it is not obvious that the cosine dis-
tance between phenotype vectors can accurately capture and quantify the 
phenotypic overlap between record pairs. To evaluate the reliability of our 
method, we extracted a large set of ~7,000 OMIM record pairs, which had 
a high degree of phenotypic overlap. This assertion of phenotypic overlap 
was based on a combination of the opinion of expert OMIM curators and 
experts familiar with the diseases under consideration (Supplementary 
Methods online). To evaluate the phenotypic overlap of record pairs in 
this set, we manually curated 100 random record pairs. This evaluation 
showed that over 90% of the pairs consist of records with a high degree 
of phenotypic overlap (Supplementary Table 1 online).

The reliability of the phenotype similarity score was then tested by fit-
ting a calibration curve of the score against the overlap with the OMIM 
record pairs (that is, the percentage of the pairs with a given score found 
among the record pairs). This demonstrates their direct correlation 
(Supplementary Fig. 2 online). The higher the phenotype similarity 
score between records measured by our text-mining scheme, the higher 
the probability that the records had been independently evaluated to 
have a phenotypic overlap by the OMIM curators, so that indeed the 
constructed phenotype vectors and scoring scheme produce a reliable 
measure of phenotypic overlap between OMIM records.

Constructing a scored network of human protein interactions
We created a human protein interaction network by pooling human 
interaction data from several of the largest databases and increased the 
coverage by transferring data from model organisms. We then devised 
and tested a network-wide confidence score for all interactions. This score 
relies on network topology and furthermore considers (i) that interac-
tions from large-scale experiments generally contain more false positives 
than interactions from small-scale experiments23, and (ii) that interac-
tions are more reliable if they have been reproduced in more than one 
independent interaction experiment23. The reliability of this score as a 
measure of interaction confidence was confirmed by fitting a calibration 
curve of the score against overlap with a high-confidence set of about 
35,000 human interactions (Supplementary Fig. 3 online). The resulting 
network contains ~343,000 unique interactions between ~8,500 human 
proteins. Of these, ~62,000 are high-confidence interactions.

Testing the predictor on 1,404 linkage intervals
We trained a Bayesian predictor to rank known disease-causing pro-
teins in linkage intervals, by assigning candidates to protein complexes 

and ranking these complexes based on the phenotypes assigned to their 
members by text mining. The predictor was validated by fivefold cross-
validation on a total of 1,404 linkage intervals containing an average of 
109 candidates and including one candidate known to be involved in the 
particular disease. For ranking candidates, the Bayesian predictor takes as 
input the patient phenotype (e.g., Leber congenital amaurosis) and a link-
age interval, and the candidates are ranked by the following three steps 
(Fig. 1). First, a given positional candidate is queried for high-scoring 
interaction partners (termed a virtual pull-down of the protein). These 
interaction partners compose the candidate complex. Second, proteins 
known to be involved in disease are identified in the candidate complex, 
and pairwise scores of the phenotypic overlap between diseases of these 
proteins and the candidate phenotype are assigned. Third, based on the 
phenotypes represented in the candidate complex, the Bayesian predictor 
awards a posterior probability score to the candidate in the complex. All 
candidates in the linkage interval are ranked on the basis of this score. 
The biological interpretation of a high-scoring candidate is that this pro-
tein is likely to be involved in the molecular pathology of the disorder 
of interest, because it is part of a high-confidence candidate complex 
in which some proteins are known to be involved in highly similar (or 
identical) disorders.

Performance of the Bayesian model relying on phenomic 
scoring of protein complexes associated with disease
The results of prioritizing candidates in the 1,404 test linkage intervals 
show that the predictor has both good precision and recall (Fig. 2a). 
For each disease, we consider the known disease gene as the relevant 
gene. Our method makes a prediction for a disease if the top-scoring 
gene for this disease has a score above the threshold of 0.1. This thresh-
old is chosen because predictions scoring below 0.1 approximate the 
chance of picking the correct gene randomly. The retrieved gene is then 
this top-scoring gene. Precision (at a given threshold) is the propor-
tion of relevant genes among all retrieved genes (no. of relevant genes 
retrieved/no. of genes retrieved). Recall is the fraction of the relevant 
genes that have been retrieved at the same threshold (no. of relevant 
genes retrieved/no. of relevant genes). For the 1,404 linkage intervals, 
there are 669 different predictions with a score above 0.1. Among these, 
there were 298 correctly identified disease genes, so that the precision 
at this threshold is 45% (that is, 45% of the candidates that ranked 
number one with a score above 0.1 are correctly identified as genes 
causing disease) (Fig. 2a)—a level of precision far superior to random 
prediction. At this threshold, the recall is 21%. A plot of precision versus 
prediction score cutoff shows proportionality between the score and 
the chance that the candidate is correct. Candidates scoring above 0.9 
are correct in more than 65% of the cases (Fig. 2a). Thus, high-scor-
ing candidates are very likely to be correct, and the score awarded to a 
candidate is a direct indication of the chance that the gene contributes 
to the disease in question.

There were two main types of failures to identify the relevant genes. 
Either the proteins coded by the relevant genes do not have an interac-
tion partner that is involved in a relevant phenotype (which applies to 
59% of all intervals), or there is a gene in the region considered a bet-
ter candidate by the predictor (which applies to 26% of all intervals). 
These 26% could in theory be correct predictions, as suggested by manual 
inspection of false predictions with high posterior probabilities. By far 
the most common failure is the lack of interaction partners involved in 
similar diseases. In 75% of such cases there were no candidates that scored 
above the threshold of 0.1. These failures could either be due to a lack 
of data or because some disease proteins do not interact with proteins 
involved in similar diseases. It seems most likely that the failures are due 
to a combination of both.
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We also tested a predictor trained on large-scale protein interac-
tion data from which bias related to human diseases was eliminated 
(Supplementary Methods online). Here we observed a comparable 
precision to the predictor trained on the full protein interaction data 
set (Fig. 2b). Using these data, the precision above 0.1 is 25%, and above 
0.9, it is 58%. Therefore, although the performance is slightly lower, it 
is still very high. These results illustrate the value of large-scale protein 
interaction data from model organisms, if subjected to stringent quality 
control. The much lower recall (2.3%) is to be expected with less data. 
This shows that it is possible to accurately identify disease genes using 
data from model organisms that were not produced specifically to inves-
tigate disease relationships.

Because mutational analysis of candidates in linkage intervals is 
extremely demanding in terms of resources, our method should be valu-
able for identifying highly likely candidates and thereby facilitating the 
discovery of novel genes involved in human disease.

Predicting novel disease gene candidates
OMIM contains 870 intervals linked to diseases for which there are no 
confirmed disease-causing genes. We ranked the genes in these intervals 
by the method depicted in Figure 1. The full set of predictions above the 
threshold of 0.1 can be seen in the Supplementary Data. We present the 
best-scoring candidates made by our predictor in Supplementary Table 2 
online. In each of the 91 represented intervals at least one candidate scores 

above 0.2. In some intervals there are also candidates scoring in the range 
0.1–0.2, these are included for completeness, so the table contains a total 
of 113 candidates in 91 intervals.

All predictions in Supplementary Table 2 were followed up by inde-
pendent literature studies, where we investigated the distance of the pre-
dicted gene to the closest published high-resolution marker. Seven genes 
were located >20 Mb from such markers (labeled * in Supplementary 
Table 2 online). We also investigated whether the candidates had previ-
ously been associated with the respective disorders, and whether there 
were inconsistencies between candidates we proposed and those pro-
posed by other groups for the same diseases and intervals.

Twenty-four of the predictions point to genes that are most likely true 
positives, but where the causative mutation has not yet been identified 
(annotated with “2” or “2#” in Supplementary Table 2 online). In these 
cases, our predictions should be seen as further evidence that the genes 
are involved in the respective diseases. Seven predictions point to genes 
where a causative mutation has been identified (annotated with “3” in 
Supplementary Table 2 online). Together, these constitute 31 predictions 
most likely to be true. Of these, 25 are the best scoring in the interval, and 
6 are scored second or lower. Sixteen predictions point to genes for which 
literature studies show that a different gene is strongly incriminated in 
the disease, most likely rendering the prediction wrong (annotated with 
“1#” in Supplementary Table 2 online). Of these, 11 are the best-scoring 
candidate in the interval and 5 score second or lower. When considering 

Linkage interval,
with N candidates
found in genetic

studies to be
associated with

the patient
phenotype

Patient phenotype
Leber congenital

amaurois

Pairwise similarity of protein phenotype
and patient phenotype

Not involved in
similar disease

Figure 1  Steps in scoring each candidate in a linkage interval. First, a virtual pull-down of each candidate identifies putative protein complexes including 
the candidate. Each complex is named the candidate complex. Second, proteins responsible for promoting disease are identified in the candidate complex, 
and the pairwise similarity to the patient phenotype is measured by text-mining. In this case, proteins that are involved in different disorders comparable to 
Leber congenital amaurosis are colored according to the clinical overlap with this phenotype. The last step involves scoring and ranking the candidates by the 
Bayesian predictor. Each candidate is scored based on phenotypes associated with the proteins in the candidate complex, and all candidates in the interval 
are ranked based on this score.

ANALYS IS
©

20
07

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy



312 VOLUME 25   NUMBER 3   MARCH 2007   NATURE BIOTECHNOLOGY

only the best-scoring candidate in each interval (as we have done in the 
benchmark), 25 are most likely true positives and 11 are most likely nega-
tives. Thus, the precision is 69%—even better than the precision in the 
benchmark, where predictions above 0.2 have a precision of 49%. Sixty-
six of the candidates belong to intervals where there is no evidence in 
the literature regarding a gene(s) that contributes to the pathology. We 
consider these as novel candidates. All complexes underlying the candi-
dates scoring 0.1 or above are available for download from the database 
supporting this work.

To exemplify the candidate protein complexes underlying the scoring 
of the Bayesian predictor, we present four case studies of the novel candi-
dates from Supplementary Table 2 online. Similar analysis can be carried 
out for all 506 complexes in the data set, pointing to specific approaches 
toward validation of the proposed relationships.

Case studies
Retinitis pigmentosa is a clinically and genetically heterogeneous group 
of disorders. Common traits are night blindness, constricted visual field 
and retinal dystrophy. In an associated interval on 2p15–p11 (ref. 34), the 
Bayesian predictor points to LOC130951 with a score of 0.5232. This pro-
tein is uncharacterized but evolutionarily conserved, and it is putatively 
involved in the disease based on an interaction with CRX25,35 (Fig. 3a). 
CRX is a homeobox transcription factor known to be involved in retinitis 
pigmentosa and cone rod dystrophy36. The candidature of LOC130951 is 
not obvious, and because both interaction studies reporting the interac-
tion to CRX are large scale, including thousands of interactions, it seems 
unlikely that LOC130951 would have been chosen as a suitable candidate 
by manual investigation of the interval.

Epithelial ovarian cancer arises as a result of genetic alterations in the 
ovarian surface epithelium. In an associated interval on 3p25–p22 (ref. 
37), the Bayesian predictor points to Fanconi anemia group D2 protein 
(FANCD2) with a score of 0.9981. This protein is placed in a complex 
with breast cancer type 2 susceptibility protein (BRCA2), breast cancer 
type 1 susceptibility protein (BRCA1) and nibrin isoform 1 (NBN), all 
of which are involved in ovarian cancer, breast cancer or chromosomal 
instability disorders38–41 (Fig. 3b). Furthermore, other proteins involved 
in cancer can be identified in the complex (Supplementary Data and 
Supplementary Fig. 4 online). FANCD2 is part of the BRCA pathway in 
cisplatin-sensitive cells42 and is known to be involved in different types 
of cancer43. However, to our knowledge, a mutation in this gene has 
never been demonstrated in epithelial ovarian cancer, and we consider 
it to be a likely candidate in epithelial ovarian cancer in families with 
linkage to 3p22–p25.

Inflammatory bowel disease is characterized by chronic, relapsing 
intestinal inflammation. In an associated interval on 6p44,45, the Bayesian 
predictor points to receptor-interacting serine/threonine protein kinase 
(RIPK1) as the most likely candidate with a score of 0.9984 (Fig. 3c). 
The candidate complex includes the signaling proteins tumor necrosis 
factor receptor 2 (TNFRSF1B), tumor necrosis factor precursor (TNF) 
and tumor necrosis factor receptor precursor (TNFRSF1A), all known 
to be associated with inflammatory bowel disease or other inflamma-
tory disorders. Furthermore, other proteins involved in inflammation 
and immune responses can be observed in the complex (Supplementary 
Data and Supplementary Fig. 5 online). We thus identified a positional 
candidate, which is placed centrally in a complex of proteins known to 
be involved in inflammatory bowel disease and other types of inflamma-
tion. We note that RIPK1 lies 20.6 Mb from the closest high-resolution 
marker published. However, considering that all of 6q was screened for 
candidates, and that several genes lying far from the published markers 
are most likely true predictions in Supplementary Table 2 online, we 
believe that RIPK1 is a very likely candidate involved in inflammatory 
bowel disease.

Amyotrophic lateral sclerosis (ALS) with frontotemporal dementia is a 
degenerative motor neuron disorder characterized by muscular atrophy, 
progressive motor neuron function loss and bulbar paralysis. In many 
families, hereditary ALS is associated with frontotemporal dementia 
and linkage has been shown to an area on 9q21–q22 (ref. 46). Here, the 
Bayesian predictor points to two likely candidates: bicaudal D homolog 
2 (BICD2) and cytoplasmic isoleucyl-tRNA synthetase (IARS), scor-
ing 0.4351 and 0.2154, respectively. Although BICD2 is scored highest,
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Figure 2  Performance of the Bayesian predictor. (a) A plot of recall of the 
predictor against precision shows that precision for high-scoring candidates 
can approach 65%. We also trained a predictor only on large-scale data 
where we had removed all data that were related to diseases that were 
represented in the test set. (b) Prediction score cutoff is plotted for both the 
predictor trained on all protein interaction data in our network (green line) 
and the predictor trained only on unbiased large-scale data (blue line). The 
precision of these two approaches is comparable, showing that it is possible 
to find disease genes with very high precision, even with unbiased large-
scale data inferred from model organisms, if these data are scored correctly.
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both candidates are awarded good scores and 
are plausible candidates for contributing to 
ALS associated with dementia. However, inves-
tigation of the candidate complexes suggests 
that BICD2 is more likely to be involved in 
nonfamilial ALS not associated with dementia, 
because it is part of a complex with dynactin, 
which is associated with ALS without demen-
tia. IARS is in a complex with superoxide dis-
mutase 1, a protein known to be involved in 
familial ALS47 including dementia (Fig. 3d). 
Also, the IARS complex contains molecular 
chaperones and other proteins that have been 
connected to the disease and other types of 
dementias (Supplementary Fig. 6 online), and 
the interaction data underlying the complex 
is highly reproducible (Supplementary Data 
online). Both candidates are likely, but the 
candidate complex underlying IARS is seem-
ingly more relevant to familial ALS, and it is 
plausible that IARS could be involved in the 
disease in families with linkage to 9q21–q22. 
Because little is known about this disorder, the complex revealed here is 
an interesting new lead concerning its underlying causes.

These case studies indicate the value of data mining our phenome-
interactome network and integrating interaction data across multiple 
organisms for positional candidate prioritization. In the case of retinitis 
pigmentosa and ALS with frontotemporal dementia, the predictor iden-
tifies nonobvious candidates in novel putative complexes supported by 
a network of reproducible interaction data from humans and multiple 
model organisms. In the cases of inflammatory bowel disease and epi-
thelial ovarian cancer, we identify partly characterized complexes, where 
several members are known to be involved in the patient phenotype. 
However, because there are ~500 positional candidates in the case of 
inflammatory bowel disease, it would require extensive literature studies 
to reveal this network and candidate by manual data integration. We thus 
believe that RIPK1 would probably not have been identified as a good 
candidate despite prior knowledge of its involvement in a known network 
contributing to inflammatory responses. 

DISCUSSION
We have recently witnessed the emergence of integrative methods for 
identifying probable disease genes in linkage intervals associated with dis-
ease based on data integration involving, for example, Gene Ontology cat-
egories and expression data2–12. Traditionally these methods are compared

by measuring average fold enrichment of positional probability 
(Supplementary Methods online). If a method ranks the true candidate 
in the top 10% of all candidates in 50% of the linkage intervals, there is 
a tenfold enrichment in the successful predictions intervals and fivefold 
enrichment on average. We show that our method increases the probabil-
ity 108.8 times for the successful predictions and 23.1 times on average, 
significantly outperforming the other computational methods for posi-
tional candidate prioritization, which report 5.6–31.2 times enrichment 
in the successful linkage intervals to 3.8 to 19.4 times enrichment on 
average (Supplementary Table 3 online). The most common failure of 
our method to correctly identify the disease gene results from the inability 
to find interaction partners associated with a similar phenotype as the 
relevant protein. This could result from either a lack of data or the failure 
of these proteins to interact with proteins involved in similar phenotypes. 
In 75% of these cases, failure to identify another candidate scoring over 
0.1 eliminates the possibility of an incorrect prediction.

Our ability to assign candidates to high-confidence protein com-
plexes and rank these complexes in terms of phenomics has permitted 
us to present a first draft of 506 protein complexes associated with 
human disease. The success of our method can be attributed to a com-
bination of factors. First, we integrate experimental protein interaction 
data with a phenotype similarity scheme, thereby taking advantage of 
the complete clinical spectrum of related human diseases. Also, we use 

a b

c d

-

-

-

-

Figure 3 Case studies of four candidate 
complexes. (a–d) These candidate complexes 
are subjected to virtual pull-down with the best-
scoring candidate in retinitis pigmentosa 28 
(RP28) (a), epithelial ovarian cancer (EOC)
(b), inflammatory bowel disease (IBD) (c) and 
a high-scoring candidate in amyotrophic lateral 
sclerosis (ALS) with frontotemporal dementia
(d). Solid black circles (c) represent proteins 
that are the high-scoring candidates in the four 
disorders. Numbered circles are proteins that 
interact with the candidate proteins. Colored 
nodes are proteins identified by our phenotype-
similarity scheme. Gray proteins are not predicted 
by our phenotype-similarity scheme to be 
implicated in any disease. 
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high-confidence protein complexes for identifying novel candidates, 
thus ensuring that we take advantage of the full protein network context 
of the candidate, which we show is well suited for functional association 
of proteins with diseases. Only three of the previously published meth-
ods use protein interaction data3,21,22. Whereas one21 relies completely 
on unscored binary interaction pairs to identify candidates in identical 
diseases, others3,22 incorporate unscored human protein interaction data 
as one of the weaker sources of information. The two latter methods do 
not take advantage of cross-species integration of interaction data and 
none of the three integrate phenotypic descriptions as we have done. 
Furthermore, two approaches3,21 search only for candidates implicated 
in identical diseases and do not take advantage of information from 
different diseases with a phenotypic overlap. Another method22 relies 
on provision of a training set and could theoretically be trained using 
proteins involved in nonidentical but overlapping phenotypes. These 
methods report 10.0–15.4 times enrichment in the successful linkage 
intervals and 5.0–10.0 times enrichment on average (Supplementary 
Table 3 online). All three methods are innovative and of high quality, 
but the difference in performance can readily be explained by recall-
ing that the use of high-confidence protein complexes and data about 
overlapping phenotypes is much better at inferring functional associa-
tions than the search for unscored single-interaction partners involved 
in identical phenotypes only. The complexes generated in the training 
and validation of the method provide a valuable resource for further 
investigations by researchers investigating these diseases, because the 
complexes place the disease-causing proteins in a functional context 
relative to other disease-associated proteins. We have created a database 
of these two data sets (available from http://www.cbs.dtu.dk/suppl/dgf/) 
providing a draft of 506 putative human disease complexes, determined 
by the current resolution of data. Our validation shows that the score 
associated with each complex can be used as a reliable indication of the 
quality of the data underlying the complex.

METHODS
Design choices of the Bayesian predictor. We have strived to make optimal design 
choices to guarantee the quality of the methodology. First, for the phenotype 
similarity score, we opted for the UMLS vocabulary, because it is a well-known 
resource for this type of analysis, and MMTx for the term mapping. There are 
some limitations when using MMTx and UMLS (see Supplementary Methods 
online), but we concluded that these are well suited for our analysis, and improve-
ment of these resources is beyond the scope of this work. Second, we chose term 
frequency–inverse document frequency (tf-idf) as the term-weighting strategy. 
Compared with unweighted vectors and idf term weighting, tf-idf performed 
better (Supplementary Fig. 7 online). Third, we used the cosine similarity mea-
sure between phenotype vectors, because it is a well-accepted similarity measure 
for weighted-term vectors. We demonstrate the robustness of this measure on 
phenotype vectors constructed from a different text source, weighting method 
and vocabulary (Supplementary Fig. 8 online). Finally, for reporting likely can-
didates, a threshold of 0.1 on the Bayesian score was chosen on the basis of our 
benchmark. Using these design choices we created a Bayesian model that was 
trained and validated using fivefold cross-validation. Additionally, the model was 
thoroughly optimized to get the optimal separation of signal to noise from the 
phenotype similarity scheme, the protein interaction data and the other param-
eters in the model. This was done using a genetic algorithm (Supplementary 
Methods online).

Filtering irrelevant semantic types from UMLS. The UMLS vocabulary was man-
ually checked for semantic types that were obviously not clinically relevant (for 
example, STY|T066|Machine Activity, STY|T068|Human-caused Phenomenon or 
Process, STY|T093|Health Care Related Organization, STY|T097|Professional or 
Occupational Group). Terms belonging to these semantic types were filtered out 
and do not appear in the phenotype vectors. This procedure helps in limiting the 
phenotype vectors to relevant medical terms to as large an extent as possible.

Phenotype similarity scores. Both the text and clinical synopsis parts of each 
OMIM record were parsed with MMTx (http://mmtx.nlm.nih.gov/) (for a dis-
cussion on the recall, precision and well documented problems of MMTx see 
Supplementary Methods online) to find the occurrence of medical terms in 
a subset of the UMLS vocabulary31, where a number of obviously nonclinical 
semantic type categories had been removed. Phenotype vectors for each record 
were constructed so that the value of each dimension in the vector represents the 
number of occurrences of that term in that particular record. Because many rel-
evant terms (for example, mental retardation) are very frequent in OMIM, we also 
assigned a weight to every extracted term in a phenotype vector. This was done by 
comparing the frequency with which the term was used in the record in question 
to its mention the term in all records (that is, all of OMIM). This weight is called 
tf-idf48 (Supplementary Methods online) and markedly improves the predictive 
quality of the data (Supplementary Methods online). Furthermore, this procedure 
normalizes the term weight using the length of the specific record and the total 
length of all records. This normalization reduces negative bias in relation to short 
records, and positive bias in relation to long records. Once vectors for all records 
had been constructed, pairwise similarity was calculated as the cosine of the angle 
between the OMIM vectors after normalization32. We used the cosine measure 
as a natural similarity score for two vectors, because it is a standard measure used 
in this type of text-mining analysis and it is fast to calculate. We note a small bias 
against some of the phenotype vectors used to predict because of less well curated 
and described phenotype records in the prediction set than in the benchmarking 
set (Supplementary Table 4 online). We believe this bias is largely caused by less 
extensive annotation by the OMIM curators of records describing loci where the 
disease gene has not been identified. The result is fewer predictions than expected 
from the benchmark. However, it is important to note that the predictions we do 
get are of equal quality to the benchmarking case, because the posterior probability 
score relies on the quality of the data used for the prediction.

Validating the phenotype similarity score. To investigate to what extent our 
phenotype vector cosine scores could correctly assign phenotype similarity 
between scored records, we fitted a curve of the score against the overlap in 
OMIM record pairs that had a high degree of phenotypic overlap (Supplementary 
Methods online). The curve shows that the computational phenotype similarity 
score is directly correlated to the probability of overlap with these record pairs 
(Supplementary Fig. 2 online)

Constructing a scored human protein interaction network. Protein interaction 
data were downloaded from MINT49, BIND50, IntAct51, KEGG annotated pro-
tein-protein interactions (PPrel), KEGG Enzymes involved in neighboring steps 
(ECrel)52 and Reactome proteins involved in the same complex, indirect complex, 
reaction or neighboring reaction53. All human data were pooled, and to increase 
the coverage of interactions, interolog data (the transfer of protein interactions 
between orthologous protein pairs in different organisms)54 were included by a 
method similar to that reported by Lehner and Fraser55. Interactions were trans-
ferred from 17 eukaryotic organisms and added to the network. Orthology was 
assigned using the Inparanoid database56 with strict thresholds. To obtain a global 
interaction score for all interactions in the network, we constructed a probabilistic 
protein interaction score that took into account the topology of the interaction 
network surrounding the interaction, the experimental setup (large-scale vs. small-
scale) and the number of different publications in which the interaction had been 
detected (Supplementary Methods online).

Making a virtual pull-down. A virtual pull-down of a given protein was done by 
querying the interaction network for all interactions of the protein (and subse-
quently all interactions between the interacting proteins) and only retaining the 
interactions over a given score threshold as defined by the genetic algorithm in 
the training steps of the Bayesian predictor. This means that the resulting inter-
actions all are of high confidence and supported by network topology, different 
publications, reliable small-scale interaction experiments, reproducibility or a 
combination of these.

Identifying proteins involved in diseases in the candidate complexes. Ensembl 
Mart (http://dec2005.archive.ensembl.org/Multi/martview) was used to associate 
proteins to phenotypes and identify proteins involved in disease in the candidate 
complexes.
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Making the benchmarking cases. A list of 3,256 disease genes was initially 
downloaded from the Disease Gene table in GeneCards (http://nciarray.nci.nih.
gov/cards/). GeneCards mines several different databases, including OMIM, for 
text describing the disease genes in this table. For some of the disease genes the 
entries in GeneCards are sentences, originating from OMIM, specifically stat-
ing that defects in particular genes lead to particular diseases. To exclude genes 
associated to diseases by circumstantial evidence, and only include genes in which 
genetic defects were known to be causative in relation to the particular disorders, 
we included genes in the benchmarking set only if GeneCards had found such 
sentences in OMIM in relation to the gene. Because OMIM is a database manu-
ally curated by disease experts, we consider such statements from OMIM to be 
trustworthy. However, to double-check that no mistakes were made by GeneCards 
in the extraction procedure, or in the curation process by OMIM, we randomly 
selected 50 of these statements and manually checked (i) that such statements 
were actually present in the relevant OMIM files and (ii) that the statements were 
supported by cited literature. In these 50 cases no discrepancies were found, and 
this investigation led us to consider that all of the statements are correct. This pro-
cedure led to a subset of 963 genes and their corresponding proteins. These genes 
and proteins were associated with their respective phenotypes using GeneCards 
references to OMIM diseases. This showed that the 963 genes are involved in 
1,404 distinct phenotypes, which were used for the training and validation of 
the Bayesian predictor. Benchmarking cases were made by associating the genes 
to distinct phenotypes using the annotation in GeneCards and by assigning the 
genes to artificial linkage intervals. This was done by including a random number 
of genes upstream and downstream of the known disease gene. The interval sizes 
were randomized so that they have a distribution similar to the intervals in OMIM 
morbidmap, for which no gene has been identified, leading to an average of 108.8 
genes in each of the 1,404 linkage intervals.

Training and validating the Bayesian model. Training and benchmarking of the 
Bayesian model were done by fivefold cross-validation on the benchmarking set. 
The set of 1,404 benchmarking cases was split into five sets and the Bayesian 
model trained and optimized on four of these fractions (Supplementary Methods 
online). Subsequently, the optimized model was used to rank candidates in bench-
marking cases made on the last fifth of the data set. This was done for all combina-
tions of the five fractions. The benchmarking results can be seen in Supplementary 
Table 5 online.

Bayesian disease gene predictor. The goal is to compute, for each candidate in 
a critical interval, the probability that this is the disease-related protein. High 
probabilities should be assigned to candidates that interact with one or more 
proteins involved in disorders that are phenotypically similar to the one being 
investigated. This logic is expressed in the form of a probabilistic model, and we 
use Bayes’ theorem to compute the probabilities. The model includes parameters 
for (i) the probability that a candidate protein has any reported interaction part-
ners, (ii) protein interaction score, (iii) the number of interaction partners that 
are involved in similar disorders and (iv) computational phenotype similarity 
score. All parameters are estimated from our data sets for both disease- and non-
disease-associated genes, where we see that the parameter values are different in 
the two cases. The probability that protein number i (among N candidates) is the 
disease-associated one, is computed as follows:

P(DATA | dis = i) × P(dis = i)

P(DATA | dis = j) × P(dis = j)

P(dis = i | DATA) =
N

j = 1

where P(dis = i|DATA) is the posterior probability that candidate number i is the 
disease-related protein after evaluating all the data. P(dis = i) is the prior probabil-
ity that candidate number i is the disease-causing protein, before evaluating any 
data. The prior value was set to 1/N for all candidates. The term P(DATA|dis = i) 
is the probability of obtaining the observed data if candidate number i was in 
fact the correct one. This likelihood is computed from the interaction data and 
any associated phenotype descriptions, and using the estimated parameters, in a 
straightforward manner (Supplementary Methods online).

Case studies. Case studies were made by downloading complex data available for 
all putative disease complexes (http://www.cbs.dtu.dk/suppl/dgf/) and creating an 

interactive graph in the free software cytoscape (http://www.cytoscape.org/). Data 
in these files combined with literature studies were used to generate the hypoth-
eses. More data on the case studies can be found in Supplementary Data online. 
Proteins are named by using the corresponding gene name according to HUGO 
gene nomenclature (http://www.gene.ucl.ac.uk/nomenclature/).

Note: Supplementary information is available on the Nature Biotechnology website.
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