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Despite these successes in identifying risk loci, the causal variant and/or 
the molecular basis of risk etiology has been determined for only a small 
fraction of these associations2–4. Plausible candidate genes can be based 
on proximity to risk loci, but few have so far been defined in a more 
systematic manner (Supplementary Table 1).

Increased investment in post-GWAS functional characterization of 
risk loci5 has now been advocated across diseases and for cardiovas-
cular disease and diabetes6. For cancer biology, the complex interplay 
between genetics and the environment in many cancers poses a par-
ticularly exciting challenge for post-GWAS research. Here we suggest 
a systematic strategy for understanding how cancer-associated variants 
exert their effects. We mostly refer to SNPs throughout the paper, but 
we recognize that other types of common genetic (for example, copy 
number variants) or epigenetic variation may influence risk.

Our understanding of the way in which a risk variant initiates disease 
pathogenesis progresses from statistical association between genetic 
variation and trait or disease variation to functionality and causality. 
The functional consequences of variants in protein-coding regions 
causing most monogenic disorders are more readily interpreted because 
we know the genetic code. For non-Mendelian or multifactorial traits, 
most of the common DNA variants have so far mapped to non-protein–
coding regions2, where our understanding of functional consequences 
and causality is more rudimentary.

Our hypothesis is that the trait-associated alleles exert their effects by 
influencing transcriptional output (such as transcript levels and splic-
ing) through multiple mechanisms. We emphasize appropriate assays 
and models to test the functional effects of both SNPs and genes map-
ping to cancer predisposition loci. Although much of what is written 
is applicable to alleles discovered for any trait, the section on modeling 
gene effects will emphasize measuring cancer-related phenotypes.

At some loci, multiple, independently associated risk alleles rather 
than single risk alleles may be functionally responsible for the occur-
rence of disease. Genotyping susceptibility loci (and their correlated 
variants) in multiple populations with different linkage disequilibrium 
(LD) structures may prove effective in substantially reducing the num-
ber of potentially causative variants (that is, the same causal variant 
may segregate in multiple populations), as shown for the FGFR2 locus 
in breast cancer7, but for most loci there will remain a set of potentially 
causative variants that cannot be separated at the statistical level from 
case-control genotype data.

A susceptibility locus should be re-sequenced to ascertain all 
genetic variation, identifying candidate functional or causal variants 

Genome wide association studies (GWAS) have identified more than 
200 mostly new common low-penetrance susceptibility loci for cancers. 
The predicted risk associated with each locus is generally modest (with 
a per-allele odds ratio typically less than 2) and so, presumably, are the 
functional effects of individual genetic variants conferring disease sus-
ceptibility. Perhaps the greatest challenge in the ‘post-GWAS’ era is to 
understand the functional consequences of these loci. Biological insights 
can then be translated to clinical benefits, including reliable biomarkers 
and effective strategies for screening and disease prevention. The purpose 
of this article is to propose principles for the initial functional character-
ization of cancer risk loci, with a focus on non-coding variants, and to 
define ‘post-GWAS’ functional characterization.

By December 2010, there were 1,212 published GWAS studies1 report-
ing significant (P < 5 × 10–8) associations for 210 traits (Table 1), and the 
Catalog of Published GWAS states that by March 2011, 812 publications 
reported 3,977 SNP associations1. This is likely a small fraction of the com-
mon susceptibility loci of low penetrance that will eventually be identified.  
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region if a similar association was found in this population, as the 
African-American population generally has smaller LD block struc-
ture than the European population9. Alternatively, LD structure can be 
ignored and arbitrary physical limits can be set to define boundaries, for 
example, by choosing to sequence 1 Mb across the risk allele. The region 
can be further narrowed through incorporation of biological infor-
mation for the presence of a compelling candidate gene or transcript. 
However, note that relying on biological assumptions undermines the 
agnostic approach of GWAS.

The depth of coverage and the number of subjects to be sequenced 
are important considerations. Current targeted enrichment technolo-
gies yield non-uniform sequencing coverage, which could increase the 
heterozygote false-negative rate. Sequencing coverage of 25× or greater 
may be required, especially if sequencing-based genotyping and not just 
variant discovery is a goal. The likelihood of identifying less common 
variants is also dependent upon the number of subjects sequenced, and 
often DNA from several hundreds of subjects is needed. In summary, 
because of the fact that both the size of the region and the number of 
individuals to be sequenced influence cost, the final design will likely 
be a compromise. Costs can be offset to some extent with the use of 
molecular barcoding, when individual genotypes are important, and 
DNA pooling, when variant discovery is important.

Annotating variable regulatory elements
Characterizing the regulatory landscape of susceptibility regions is an 
important step in understanding how risk alleles affect function. The 
most abundant of these regulatory sequences are enhancers, but other 
regulators such as promoters, insulators and silencers may also be sus-
ceptibility targets. Unlike core promoters (at transcription start sites of 
genes), distal regulatory sequences such as enhancers are often cell-type 
specific10 and thus may explain the tissue- and disease-specific nature 
of common susceptibility alleles. Studying histone modifications or 
DNase sensitivity (or hypersensitivity) has proven to be a powerful 
approach in annotating tissue-specific regulatory elements11,12 and is 
more informative than studying sequence conservation, as regulatory 
elements may be unconstrained across mammalian evolution13–15. 
Using chromatin annotations to identify putative functional SNPs 
within regulatory sequences at known susceptibility loci has recently 
been proposed16. More precise demarcation of such regulatory regions 
may be achieved by assessing the association of candidate transcrip-
tion factors with response elements. Both histone modifications and 
transcription-factor–occupied regions are currently identified using 
chromatin immunoprecipitation sequencing (ChIP-Seq) methodolo-
gies, and signals yield short DNA stretches (typically <1 kb) amenable 
to detailed analyses. Enhancer activity in such regulatory regions can 
be assayed using reporter genes in vitro4 and/or in vivo11.

Integrating knowledge of regulatory sequences at risk loci with cata-
logs of risk-associated SNPs at these loci may be an efficient approach 
to prioritizing both candidate regulatory sites and the most likely func-
tional variants. This concept is illustrated by work on 8q24 risk loci. 
Two functional SNPs at chromosome 8q24 have been associated with 
prostate and colorectal cancer, respectively. Several transcriptional 
enhancers were identified at 8q24. Two of them, in a prostate cancer 
risk region, were occupied by the androgen receptor and responded 
to androgen treatment, with one containing a SNP within a FoxA1 
binding site4. The prostate cancer risk allele facilitated both stronger 
FoxA1 binding and stronger androgen responsiveness. In a separate 
study, an 8q24 SNP in colorectal cancer was also found situated within 
a transcriptional enhancer, and the enhancer activity was affected by the 
SNP17. In addition, the SNP was shown to physically interact with the 
MYC proto-oncogene, with allele-dependent binding of transcription  

and identifying candidate causal genes. Ideally, the identification of 
a causal SNP would be the next step to reveal the molecular mecha-
nisms of risk modification. Practically, however, it is unclear what the 
criteria for causality should be, particularly in non-protein–coding 
regions. Thus, although we propose a framework set of analyses  
(Box 1), we acknowledge that the techniques and methods will con-
tinue to evolve with the field.

Fine mapping
Most GWAS identify an association between the disease trait and a sur-
rogate marker (tag SNP) rather than a causal variant because SNP arrays 
were designed using SNPs chosen to capture LD structure rather than 
functional variants. To get to the underlying biology, a comprehensive 
understanding of the genetic variation of the associated regions will be 
necessary, starting with the most common SNPs.

The ongoing 1000 Genomes Project seeks to capture common (>5%) 
and less common (1–5%) variant information8 in diverse ethnic popu-
lations using a combination of low-coverage whole-genome sequenc-
ing and deeper coverage exome sequencing. However, it remains to 
be determined whether it provides complete SNP coverage across the 
entire genome, including intergenic regions and gene deserts where the 
majority of the GWAS associations have been mapped. This suggests 
that for at least some loci, targeted sequencing remains a necessity.

The goal of targeted sequencing is to capture the causal SNP(s) that is 
in LD with the associated SNP(s) (assuming that the causal SNP is not 
the associated SNP). The likelihood of identifying the causal SNP will be 
affected by both how the boundaries of the region to be sequenced are 
defined as well as the depth of sequence coverage across the region.

The region to be sequenced can be guided by LD structure, but 
there are challenges to this approach, as the strength of the correlation 
between the associated SNP and the causal SNP may be low, suggesting 
that a correlation r2 threshold value of 0.2 or even less may be needed. 
Incorporating GWAS information from non-European populations, 
such as those of African descent, could potentially reduce the target 

Table 1  The genomic context in which a variant is found can be 
used as preliminary functional analysis

Classification
Approximate  
percentagesa

Approximate  
numbersa

Intronic 40 1,047

Intergenic 32 838

Within non-coding sequence of a gene 10 262

Upstream 8 210

Downstream 4 105

Non-synonymous coding 3 79

3′ untranslated region ~1 26

Synonymous coding ~1 26

5′ untranslated region

~1 26

Regulatory region

Nonsense-mediated decay transcript

Unknown

Splice site

Gained stop codon

Frameshift in a coding sequence

The table broadly summarizes the genomic context of disease- and trait-associated SNPs 
annotated in the Catalog of Genome-Wide Association Studies (http://www.genome.gov/
gwastudies/) as of December 9th, 2010: 1,212 published genome-wide associations 
with P < 5 × 10–8 for 210 traits totaling 2,619 SNPs. Most of the SNPs are located 
in intergenic and intronic positions, but a small percentage are located upstream and 
downstream of genes, as well as in regulatory regions and splice sites. SNPs in these 
locations can be analyzed in more detail using more specific bioinformatics tools. 
aValues are indicative and dependent on genomic boundaries used.
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The ability to perform such studies has been made possible through 
the development of platforms that enable high throughput DNA 
methylation profiling at single CpG resolution26. Studies of heredi-
tary non-polyposis colorectal cancer (Lynch syndrome) suggest that 
germline genetic variation may affect epigenetic marks, resulting 
in cancer predisposition27,28. These changes in CpG methylation 
may be a consequence of cis- or trans-acting genetic variants29. For 
example, Kerkel et al. have shown sequence-dependent allele-specific 
methylation and that cis-regulatory variants control gene expres-
sion and affect chromatin states30. Further epigenetic mechanisms 
that modulate gene expression include microRNAs (miRNAs) and 
miRNA binding sites, which can be directly affected by SNPs31, and 
tandem repeats that can impact gene expression by, for example, 
altering transcription factor binding sites but also by affecting chro-
matin structure (reviewed in ref. 32).

Risk SNPs may also be tagging variants affecting the chromatin 
regulation of the nucleus. Chromatin fibers dynamically explore the 
nuclear space to establish meta-stable, long-range interactions with 
other chromatin fibers33. The functional outcome of such interactions 
is largely unknown, but it has been shown that they are capable of 
transferring epigenetic marks to modulate transcriptional processes 
both in cis34 and in trans35,36. In this way, chromosome crosstalk 
sets the stage for the spreading and propagation of pleiotropic epi-
genetic effects in a manner that reflects the topology of the network 
involved33. Sequence variants can influence communication between 
different parts of the genome37, and so SNPs can probably influence 
chromatin networks in a genotype-specific manner. For example, sin-
gle SNPs or combinations of SNPs may confer disease susceptibility by 
promoting or antagonizing the formation of chromatin networks. The 
functional annotation of susceptibility loci with respect to chromatin 
or chromosomal networks may therefore provide important insights 
into the function of germline genetic variants.

Inherited variation and gene expression
Both empirical and computational data support the notion that a con-
siderable proportion of trait-associated loci will harbor variants that 
influence the abundance of specific transcripts. These variants are often 
referred to as expression quantitative trait loci (eQTLs)38–42. Several 

factor 7-like 2 (TCF7L2). More detailed functional follow up of these 
SNPs can then be performed using biochemical approaches to study 
differential transcription factor binding and activity (for example, ChIP 
or electrophoretic mobility shift assay (EMSA)). Regulatory sequences 
containing functional SNPs determined in this way can then be matched 
to their physiological target genes (see below).

After generating data that implicate a functional mechanism, the next 
challenge will be to identify genes that are regulated by these elements. 
Possible approaches for identifying targets of regulatory sequences 
include: first, knocking out regulatory sequences in mouse models 
followed by genome-wide gene expression analyses after knockout to 
identify candidate targets; second, using the regulatory sequences as 
baits in chromatin conformation capture-based studies18,19, including 
genome-wide chromatin conformation capture-based methods; third, 
targeted editing using somatic cell knock-in technology; for example, 
allelic series in isogenic settings may be created and gene expression dif-
ferences measured, either in naturally growing cells or in cells that are 
perturbed (for example, by radiation or hormones); and finally, iden-
tifying correlations between the different genotypes of trait-associated 
SNPs and variations in the transcript abundance of candidate genes 
at those loci. Of these, the last approach represents a straightforward 
method to identify putative target genes.

Epigenetic regulation of gene expression
Promoter methylation, histone tail modifications and altered expres-
sion of non-coding RNAs, such as the large intergenic noncoding RNAs 
(lincRNAs)20,21, which associate with chromatin-modifying complexes, 
also contribute to gene regulation and are obvious candidate targets of 
functional genetic associations22. Epigenetic silencing has been shown 
to be the predominant mechanism of gene silencing during tumor 
development for a subset of genes23. For other genes, a combination of 
genetic and epigenetic mechanisms can contribute to tumor suppressor 
gene activation24. Epigenetic mechanisms also play an important role 
in mediating environmental influences on gene expression25. At sus-
ceptibility loci, the key questions are: first, do common genetic variants 
influence the epigenetic landscape to increase disease susceptibility, and 
second, do susceptibility variants within the epigenetic landscape affect 
the likelihood of gene silencing during tumor development?

1) �Target resequencing efforts using linkage disequilibrium  
(LD) structure.

2) �Use other populations to refine LD regions (for example African 
ancestry with shorter LD and more heterogeneity).

3) �Determine expression levels of nearby genes as a function of 
genotype at each locus (eQTL).

4) �Characterize gene regulatory regions by multiple empirical 
techniques bearing in mind that these are tissue and context 
specific.

5) �Combine regulatory regions with risk loci using coordinates 
from multiple reference genomes to capture all variation 
within the shorter regulatory regions that correlates with the 
tag SNP at each locus.

6) �Multiple experimental manipulations in model systems are 
needed to progressively implicate transcription units (genes) in 
mechanisms relevant to the associated loci: 
i) Knockouts of regulatory regions in animal (difficult and 

may be limited by functional redundancy, but new targeting 
methods in rat are promising) models followed by genome-wide 
expression analysis. 
ii) Use chromatin association methods (3C, CHIA-PET) of 
regulatory regions to determine the identity of target genes 
(compare with eQTL data). 
iii) Targeted gene perturbations in somatic cell models. 
iv) Explore fully genome-wide eQTL and miRNA quantitative 
variation correlation in relevant tissues and cells.

7) �Explore epigenetic mechanisms in the context of genome-wide 
genetic polymorphism.

8) �Employ cell models and tissue reconstructions to evaluate 
mechanisms using gene perturbations and polymorphic 
variants. The human cancer cell xenograft has re-emerged  
as a minimal in vivo validation of these models.

9) �Above all, resist the temptation to equate any partial functional 
evidence as sufficient. Published claims of functional relevance 
should be fully evaluated using the steps detailed above.

Box 1  Strategies to progress from tag SNP to mechanism
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rather than through direct effects on genes. In these cases, alternative 
assays will be required to implicate these genes.

Future areas of exploration for the field include: first, defining the 
appropriate target tissues to examine. Risk alleles may act in a non-cell 
or non-tissue autonomous fashion and therefore may exert their effect 
through other cell types that act upon the target tissue under consid-
eration. Second, defining the importance of eQTL analysis in tumor as 
well as normal tissue. We advocate that both tissue states should be stud-
ied until a clearer picture of the relationship between the two emerges. 
Third, using higher order computational methods, such as network 
analysis using risk variant and gene expression data to dissect the path-
ways driving disease pathogenesis. This ranges from transcriptomic 
analysis to predict the regulatory influence of transcription factors over 
gene network dependency using tools such as ARACNE55 to Bayesian 
network approaches to identify predictive relationships between genes 
from a combination of expression and eQTL data56. Although these 
tools are elegant, the ability to translate their outputs into biological 
importance is heavily dependent on the availability of manipulable and 
relevant model systems with which to test the predicted connectivity. 
These and many other approaches clearly pose validation challenges for 
many diseases, however, the field of computational biology is a powerful 
and essential catalyst for post-GWAS studies.

Cell and tissue models
Once there is sufficient evidence in support of a candidate susceptibility 
gene, more detailed functional studies will be required to characterize 
the gene’s role in the pathogenesis of the trait under consideration. 
Gaining a better understanding of the biological mechanisms of can-
cer development often relies on the analysis of models that reflect the 
human disease and the application of technologies that facilitate the 
analysis of these models (Supplementary Table 2). It is likely that estab-
lishing a functional rationale underlying the importance of allelic varia-
tion and candidate genes at common low penetrance susceptibility loci 
in biologically relevant disease models will become a major component 
of following up the genes emerging from GWAS. Disease models can be 
based on either the in vitro characterization of human tissues (primary 
tissues or cells in culture) or in vivo models of disease development.

Human in vitro cancer models are the most accessible way to test 
the function of candidate genes at susceptibility loci in tumor devel-
opment, but functional effects may be masked by an aberrant genetic 
background. Most GWAS to date have focused on genetic susceptibil-
ity to disease, and so the greatest functional impact may be observed 
in an essentially healthy, non-aberrant tissue or background. This is 
perhaps the hardest context to replicate and maintain in a laboratory 
situation, meaning that there will be a continuous drive for improve-
ments in the models used.

Progress in establishing suitable in vitro models of normal tissues 
has been hampered by difficulties in accessing specimens and the chal-
lenges of culturing primary cells. For example, prostate epithelial cells 
are dependent on the presence of a co-cultured stromal component for 
establishing the secretory cell phenotype and functional differentiation. 
For the normal colon, most commercially available normal epithelial 
cell lines are fetal in origin, and differences in fetal and adult cell biology 
limits the translational potential of work using fetal cells to model adult 
epithelial cancer genesis. There are exceptions: in breast, well-charac-
terized commercially available cell lines exist that are good models of 
normal breast tissue (for example, MCF10A cells and immortalized 
HMECs). Three-dimensional cultures of MCF10As form polarized cys-
tic structures that closely reflect the architecture and molecular features 
of breast acini in vivo. Using this system, a link between loss of BRCA1 
function and impaired luminal differentiation of mammary epithelia 

landmark studies have unequivocally shown that many transcripts in 
the human genome are influenced by inherited variation43–47. Studying 
the associations between genetic variation and gene expression offers 
a straightforward way to begin the complicated task of connecting risk 
variants to their putative target genes or transcripts. Importantly, and as 
is the case in GWAS, an agnostic approach can be taken to these analy-
ses, which does not require the disease-causing allele to be known.

eQTLs can be located either near the gene they regulate or at con-
siderable distances away from it. The distinction between local and 
distant is often arbitrary, however, as in most studies, local has often 
been defined as being within 1 Mb of the variant under consideration. 
‘Distant’ can involve interactions between an eQTL and a gene located 
on different non-homologous chromosomes. The terminology of local 
and distant in this context is preferred to cis and trans, which connote 
mechanism48. It should be noted that not only mRNA transcripts but 
also miRNA and non-coding RNA (ncRNA) transcripts should be con-
sidered as candidates.

Certain principles have emerged from eQTL studies: first, eQTLs 
tend to explain a greater proportion of trait variance than is typically 
seen for risk alleles and clinical traits; this observation translates into 
the ability to perform an eQTL study with smaller sample sizes than 
association studies for clinical traits (such as disease risk). Second, local 
eQTLs tend to have larger effects on gene expression than distant eQTLs 
and are therefore easier to discover. Third, there are likely to be a larger 
number of distant than local eQTLs49.

Many of the initial successful eQTL studies relied on available lym-
phoblastoid cell lines39,50. More recently, eQTL studies have been per-
formed in primary human tissues and have shown that at least some 
associations are tissue specific40,42,51. Although large sample sizes are 
needed in order to achieve sufficient power to detect eQTL associations, 
they are typically smaller than those used in GWAS to identify risk 
alleles. Consequently, comprehensive biobanks of normal tissues will 
need to be established to evaluate expression differences between the 
different alleles of a SNP. Establishing such biobanks will be a major part 
of the challenge; whereas extensive efforts within the cancer research 
community have established tumor tissue biorepositories, it has been 
less common to do so for normal tissues from the cells representing 
the origin of cancers. This issue is particularly problematic for tumor 
subtypes in which the cell of origin is still debated. This challenge is now 
being recognized and addressed through funding initiatives such as the 
‘Genotype-Tissue Expression (GTEx)’ supported by the US National 
Institutes of Health Common Fund.

A complementary and powerful approach to defining local eQTLs 
is to measure allelic imbalance (also called allele-specific gene expres-
sion) in individuals that are heterozygous for a risk allele. Any transcript 
with a deviation from a 1:1 ratio (as typically measured by a transcribed 
heterozygous marker) becomes a strong candidate gene52–54. It is critical 
to note that even if a transcript is associated with a risk allele, it does not 
necessarily mean that the gene is definitively involved in the trait of inter-
est; functional follow up with assays relevant to the trait are still needed to 
show that a gene is directly involved with disease development.

False negatives (where the risk-associated allele is not associated with 
an expression trait) can occur because gene expression varies in time 
and space. Therefore, the developmental time point and/or the tissue 
being studied may not be appropriate. Effects on transcript abundance 
may be subtle and therefore below the sensitivity threshold of a par-
ticular platform, and/or sample size may not be adequate. In addition, 
transcript abundance is usually evaluated under steady-state conditions. 
Also, effects may only be revealed in certain contexts, such as perturba-
tion of a particular pathway, and may occur through changes in gene 
transcripts mediated by alterations in microRNAs or non-coding RNAs 
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