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Abstract

Biomolecular pathways are built from diverse types of pairwise interactions, ranging from physical protein-protein
interactions and modifications to indirect regulatory relationships. One goal of systems biology is to bridge three aspects of
this complexity: the growing body of high-throughput data assaying these interactions; the specific interactions in which
individual genes participate; and the genome-wide patterns of interactions in a system of interest. Here, we describe
methodology for simultaneously predicting specific types of biomolecular interactions using high-throughput genomic
data. This results in a comprehensive compendium of whole-genome networks for yeast, derived from ,3,500 experimental
conditions and describing 30 interaction types, which range from general (e.g. physical or regulatory) to specific (e.g.
phosphorylation or transcriptional regulation). We used these networks to investigate molecular pathways in carbon
metabolism and cellular transport, proposing a novel connection between glycogen breakdown and glucose utilization
supported by recent publications. Additionally, 14 specific predicted interactions in DNA topological change and protein
biosynthesis were experimentally validated. We analyzed the systems-level network features within all interactomes,
verifying the presence of small-world properties and enrichment for recurring network motifs. This compendium of physical,
synthetic, regulatory, and functional interaction networks has been made publicly available through an interactive web
interface for investigators to utilize in future research at http://function.princeton.edu/bioweaver/.
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Introduction

The complexity of cellular activity is driven not only by

interactions among genes and gene products, but also by the timing

and dynamics of these interactions, the conditions under which they

occur, and the many forms that they can take. Proteins interact in

many different functional manners with multiple partners -

physically in complexes[1] and through modifications[2,3], syn-

thetically when employed in parallel pathways[4], and in regulatory

roles as activators or repressors[5] - and these interaction types

combine to form complete molecular pathways. Functional assays

such as gene expression, localization, and binding each capture

individual aspects of this molecular activity at a global level, but

translating the vast amount of resulting genomic data into specific

hypotheses at the molecular pathway level has proven challenging.

The heterogeneity of gene interactions within each pathway has

compounded this difficulty by preventing any one assay from

providing a complete biological picture. It is thus critical to integrate

large genomic data collections to describe not only the membership

of gene products within pathways, but also their construction from

the building blocks of individual types of biomolecular interactions.

In this work, we provide the means for investigators to study

complete molecular pathways at a whole-genome level as

generated from integrated functional genomic data. First, we

relate 30 general and specific biomolecular interaction types, such

as transcriptional regulation, ubiquitination (and other post-

translational modifications), or protein complex formation, in an

ontology of interaction types. This ontology is hierarchical, in that

a phosphate transfer is perforce a covalent post-translational

modification, which is in turn by definition a transient physical

interaction, and so forth. Next, we combine this ontology with

Bayesian hierarchical classification methodology [6], enabling the

simultaneous prediction of genome-wide interaction networks of

all of these 30 types from integrated heterogeneous experimental

data. Finally, we apply this method to a compendium of ,3,500

Saccharomyces cerevisiae experimental conditions, experimentally

validating several of the resulting predictions in glucose utilization,

DNA topological maintenance, and protein biosynthesis as

described below. This methodology ensures that investigators

can take advantage of all available data to accurately identify the

entire range of functional interaction types within specific

pathways and across an organism’s genome.

It is important to contrast this genome-wide system for predicting

diverse biomolecular interaction types with previous work predict-

ing specific individual interaction networks. A variety of method-

ologies have been proposed for inferring regulatory networks
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[7–10], physical interaction networks [11,12], synthetic interaction

networks [13,14], and other interaction types [15], generally from

their respective primary data types (ChIP-chip and -seq, proteomics,

double knockouts/knockdowns, etc.) Likewise, other methods have

been proposed for heterogeneous genomic data integration [16–24],

but these almost uniformly focus on either general functional

interactions or on specific bimolecular interaction types. This work

combines the strengths of these two bioinformatic areas, providing a

simultaneous platform with which all data available for a system can

be integrated and focused onto specific interaction types, genome-

wide and for individual gene products.

We first applied our yeast network compendium to explore two

cellular processes, carbon metabolism and cellular transport. This

generated many promising interactions involving Snf1, Cmk2,

Glc7, Adr1 and Gph1 supported by recent published work. We

also suggest several novel pathway connections, such as the

interplay between the glycogen breakdown and glucose utilization

pathways, by systematically layering multiple different interaction

types. To experimentally validate a collection of our predicted

yeast interactions, we focused on the synthetic lethal interactions,

where double knockouts result in lethality, predicted among

proteins involved in DNA topological change and regulation of

protein biosynthesis. Highly ranked 20 protein pairs, 10 pairs from

each pathway, were hypothesized to be synthetically lethal, and we

experimentally confirmed 14 of these pairs (70%). Furthermore,

we evaluated our posttranslational modification predictions based

on recent experimental results on 173 protein pairs, resulting in a

prediction AUC over 0.8. In an analysis of the systems-level global

and local network structures of our interactomes, we observed

differential usage of several recurring subgraphs, providing insight

into the functional design principles of pathway components.

Finally, we provide a web-based interface to explore all 30 yeast

interaction networks at http://function.princeton.edu/bioweaver.

This will allow investigators to interactively survey and generate

hypotheses from the diverse interaction types comprising the S.

cerevisiae cellular circuitry.

Results

We present a general methodology for integrating large, diverse

genomic data compendia to simultaneously predict multiple

biomolecular interaction network types (physical, genetic, regulato-

ry, etc.; Figure 1). We applied this methodology to ,3,500 S.

cerevisiae experimental conditions to generate 30 whole-genome

networks describing predicted gene and gene product interactions in

yeast. We first evaluated these predictions quantitatively using cross-

validation, achieving AUCs over 0.7 for most interaction types.

More qualitatively, we examined a set of predicted molecular

linkages of diverse types between glycogen breakdown and glucose

utilization genes, which were validated by recent literature. Finally,

we experimentally confirmed 14 of 20 predicted novel synthetic

lethal interactions in the DNA topological change pathway.

Evaluating the accuracy of predicted S. cerevisiae
biological networks

We predicted a compendium of biomolecular interaction

networks by integrating diverse yeast genomic data using a

multi-label hierarchical classification system ([6], Figure 2A). As

briefly outlined in Figure 1, we first independently predict each

interaction type using specifically trained SVM classifiers. Next, it

is desirable to avoid making inconsistent interactome predictions

due to noisy data, e.g. predicting that two genes share a regulatory

relationship without occurring within the same pathway. In order

to share information among classifiers for related interaction types

in a principled manner, each SVM’s predictions are treated as

noisy observations. The final set of labels for each gene pair is then

derived by finding the maximum likelihood assignment of

interaction labels by integrating these observations in a Bayesian

graphical model.

Based on ,30% heldout test data, our average AUC over all 30

interaction types was 0.79, with minimal variations in performance

across the interaction ontology (Figure 2A, Figure 1 in Text S1).

The most general interaction type, functional relationship, also

incurred the lowest AUC of 0.63, which remains comparable to

state-of-the-art functional interaction prediction systems [25]. In

order to quantify the contribution of our hierarchical Bayesian

system relative to predicting disparate biomolecular interaction

types in isolation, we compared the accuracy of each individual

SVM classifier to that of the complete system. For all 30 predicted

interactomes, the Bayesian hierarchy showed increased AUC

scores, averaging +0.076 and ranging from a minimum of +0.011

to a maximum of +0.166. For example, posttranslational

regulation improved from 0.61 to 0.77, while phosphorylation

increased from 0.67 to 0.79. (full ROC curves for all interaction

networks can be found in Text S1). In combination, these two

evaluations suggest that this methodology can accurately leverage

large genomic data collections to simultaneously infer a diversity of

genome-wide interaction networks.

Accurate prediction of directed interaction networks
Many gene interactions are directional and thus asymmetric,

e.g. phosphorylation or ubiquitination, in which the two

interactors take on distinct source and target roles. It is thus

important to correctly infer not only the presence or absence of

these directed interactions, but also the correct directionality.

Specifically, for each directed interaction type, we constructed a

list of all edges ranked by predicted probability; we then compared

the rank of the correct interaction direction relative to the

incorrectly flipped interaction between the same two genes

(Figure 2 in Text S1). Using this as a true- and false-positive rate

criterion, we were able to predict the correct direction of gene

Author Summary

To maintain the complexity of living biological systems,
many proteins must interact in a coordinated manner to
integrate their unique functions into a cooperative system.
Pathways are typically constructed to capture modular
subsets of this dynamic network, each made up of a
collection of biomolecular interactions of diverse types
that together carry out a specific cellular function.
Deciphering these pathways at a global level is a crucial
step for unraveling systems biology, aiding at every level
from basic biological understanding to translational
biomarker and drug target discovery. The combination of
high-throughput genomic data with advanced computa-
tional methods has enabled us to infer the first genome-
wide compendium of bimolecular pathway networks,
comprising 30 distinct bimolecular interaction types. We
demonstrate that this interaction network compendium,
derived from ,3,500 experimental conditions, can be used
to direct a range of biomedical hypothesis generation and
testing. We show that our results can be used to predict
novel protein interactions and new pathway components,
and also that they enable system-level analysis to
investigate the network characteristics of cell-wide regu-
latory circuits. The resulting compendium of biological
networks is made publicly available through an interactive
web interface to enable future research in other biological
systems of interest.

Genome-Wide Inference of Pathway Components
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interactions with average AUC of 0.85 over the 12 directed

networks (maximum 0.94, minimum 0.70). This indicates that this

methodology can accurately recover not only overall pathway

structure, but also the upstream and downstream effects of

individual gene products within molecular pathways.

Predicted interactions provide mechanistic insight into
the yeast glycolysis pathway

Simultaneous inference of biomolecular networks for many

different interaction types allows the generation of very specific

novel hypotheses. As a first example, we detail a combination of

transcriptional, genetic, post-translational, and metabolic interac-

tions among gene products coordinating glycogen breakdown and

glucose utilization in yeast.

As shown in Figure 3, Adr1 is an important transcription factor

involved in carbon metabolism in Saccharomyces cerevisiae. It has

many known regulatory inputs [26], one of which is the glucose-

responsive kinase Snf1, and what proteins transmit this regulatory

information has been under investigation for some time. By

examining different classes of predicted interactions with Adr1 and

other proteins not in our gold standard (Figure 3A), we first

identified regulatory and genetic interactions between the protein

phosphatase Glc7 and Adr1. Specifically, our prediction of a

synthetic alleviating interaction between Glc7 and adr1 mutants

places it upstream of Adr1 in this pathway. This combination of

interactions is almost always associated with an upstream

inhibitory regulator, consistent with the known biological role of

Glc7 as a protein phosphatase that removes activating phosphor-

ylations [27].

The predicted yeast networks also hypothesized post-transla-

tional regulatory interactions between Cmk2 and both Adr1 and

Gkc7 (Figure 3A). This three-protein network creates a feed-

forward regulatory motif in which Cmk2 simultaneously activates

Adr1 as well as its inhibitor Gkc7, creating a time-delayed

Figure 1. Overview of our integrated Bayesian hierarchical system for inferring diverse interaction networks. An interaction ontology
was constructed categorizing gene interaction types. A corresponding Bayesian network was constructed in which each node represents one
interaction type. This network’s structural parameters, P[parent node label |child node labels], were first determined using prior knowledge from GO
[36], KEGG [59], SGD [56], and other curated sources. Second, individual SVM classifiers were trained to predict each interaction type in isolation using
heterogeneous data sources. Third, the non-structural Bayesian network parameters, P[true latent node label |SVM output], were filled by relating each
observed SVM classifier to a latent interaction type membership node using cross validation. Finally, to generate new predictions, a gene pair’s
interaction type is first predicted by the SVM classifiers and then hierarchically resolved by finding the most probabilistically consistent set of label
assignments corresponding to the latent nodes in our Bayesian network.
doi:10.1371/journal.pcbi.1001009.g001

Genome-Wide Inference of Pathway Components
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inactivation of Adr1. These interactions are supported by a

recently published paper [26] linking the calmodulin- and Snf1-

dependent pathways to Adr1 regulation. Our predicted pathway

takes these results a step further by identifying which of the three

calmodulin-dependent kinases (Cmk2) is responsible [28]. Finally,

a novel metabolic interaction was predicted between Adr1 and

Gph1, the only high scoring interaction of its type for Adr1. Like

Adr1, Gph1 is involved in glucose metabolism by glycogen

breakdown, and both are regulated by the metabolites glucose and

cAMP [29]. A metabolic interaction between Adr1 and Gph1,

combined with the known regulation of these genes by glucose and

cAMP, suggests that coordinated regulation is occurring between

the glycogen breakdown and glucose utilization pathways and is

transcriptionally controlled by Adr1.

An inferred pathway incorporating physical, genetic, and
metabolic interactions spans cellular compartments in
yeast protein transport

Protein sorting and trafficking is an essential function of

eukaryotes and requires numerous multi-subunit complexes to

ensure the proper localization and secretion of proteins (Figure 3C,

[30]). At the early stages of this process, the two major transport

pathways from the endoplasmic reticulum (ER) to the Golgi are

governed by the SNARE and COPI complexes [30]. We predicted

synthetic interactions between these pathways (e.g. synthetic

aggravation for Arf1-Sec18 and synthetic alleviation for Sec27-

Uso1) that are supported by known genetic interactions[31,32];

Arf1 and Arf2 are a representative example, as they are considered

functionally redundant GTPases, and each COPI complex

contains either Arf1 or Arf2 [33].

Later in the pathway, Bch1 is a member of the ChAP family of

proteins, which direct cargo bound to COPI complexes in the

Golgi to their destinations such as the plasma membrane [34]. We

predict a physical interaction between Bch1 and the COPI

complex that is well established in the literature but was not part of

our gold standard. Likewise, Vps1 serves a similar function for

vacuole targeting [35], and our predictions of its physical and

shared pathway interactions with COPI are supported by the

literature [34].

Novel hypotheses in Figure 3C include the predicted physical

interaction between Bch1 and Vps1, suggesting competition

between the Sec27-Arf1 and Vps1 complexes for the Bch1 sorting

function (also supported by a metabolic interaction between

Sec27-Arf1 and Vps1). Both Vps1 and Arf1 are GTPases that

must hydrolyze GTP to perform their roles in protein sorting [33].

Thus, this predicted pathway hypothesizes a competition between

the Arf1 GTPase and Vsp1 GTPase for Bch1 that is likely

regulated by GTP availability. Similarly, the uncharacterized

membrane-bound protein YDL012c is placed in the same

pathway as Vps1, suggesting that the former may be involved in

regulating Vps1 activity. By highlighting just a few of our predicted

interactions in the protein sorting pathway, we demonstrate the

potential for generating hypotheses used to drive novel biological

discoveries.

Experimental validation of predicted interactomes
To experimentally evaluate the accuracy of a subset of our

predicted interactions in a directed manner, we focused on the

DNA topological change and protein biosynthesis regulation

processes in S. cerevisiae [36]. 20 synthetic lethality interactions

predicted with high probability were experimentally tested using

SGA technology [4,13], with the results summarized in Figure 4.

14 gene pairs (70%) were validated, 8 involved in DNA topological

change and 6 in the regulation of protein biosynthesis. Several of

the remaining 6 unconfirmed interactions may be synthetic lethal

under different conditions. For example, GCS1 and SLT2

deletions both individually decreased resistance to ethanol stress

[37], and similar conditions might elicit synthetic lethality. Based

on a total of ,100,000 pairs estimated to have been synthetically

lethal in yeast of a possible ,18 million (0.05%) [13], our

predictions are a clear improvement over the baseline rate for

novel discovery.

As an additional evaluation, we collected 24 recent publications

containing a total of 173 experimentally confirmed post-transla-

tionally regulated protein pairs (see Text S2 for the list of

publications). None of these interactions was present in our

training standard. Evaluating on this set, our Bayesian hierarchical

system achieved an AUC of 0.802, demonstrating its ability to

accurately predict novel, experimentally verifiable post-transla-

tional regulation interactions on a whole-genome scale. This

accuracy is comparable to our initial cross-validation AUC of

0.778, indicating that our evaluation provides a reasonable

estimate of the expected experimental verification rate for novel

predictions.

Systems level view of cellular interactomes
This rich compendium of inferred interaction types provided an

opportunity to analyze systems-level network features genome-

wide at multiple levels of biomolecular activity. In particular, we

examined the network structural characteristics that potentially

help to define the functional roles of each interactome. Biological

networks have been proposed to exhibit a scale free topology [38],

implying a power-law degree distribution. Previous studies have

detected such distributions based on partial networks and single

interactomes [39]. Here (Figure 5A), we observe a scale-free

degree distribution very robustly in all 30 interaction types.

However, the high-degree hubs in each interactome do differ,

reflecting the distinct functional activities carried out by each

network type. To verify this, we analyzed the extent of the overlap

of high-connectivity genes (in the top 5% of the degree

distribution) between the networks for each pair of interactomes

(Figure 5B; directed interactomes were divided into separate in-

and out-degree comparisons). The major clusters show distinct

functional similarity, correctly reflecting the similarities captured

by our interaction ontology: transient and nontransient physical

interactions each group together, synthetic interactions cluster,

and so forth. Beyond confirming the structure of the ontology, this

also captures relationships such as the sharp divide between

regulatory in- and out-degree (the most regulated genes are not

themselves high-level regulators with many targets) and a tendency

Figure 2. Performance evaluation of inferred networks. We predicted 30 S. cerevisiae interaction networks, each representing one interaction
type. A) To evaluate the overall accuracy of these networks, we withheld ,30% of the genes in our gold standard as a test set. Performance on this
test set averaged an AUC of 0.79 across all interaction types in the ontology; see Text S1 for individual ROCs. B) To specifically assess the accuracy
with which interaction directionality was predicted (as opposed to the presence/absence of interactions in part A), we tested the frequency with
which an interaction’s correct direction was ranked above its incorrect direction in each of the 12 directed interaction networks. These results are
uniformly well above random (0.5), supporting our ability to accurately predict both the presence and the directionality of many specific types of
protein interactions.
doi:10.1371/journal.pcbi.1001009.g002
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Figure 3. Examining the mechanisms of protein interactions within the yeast carbon metabolism and cellular transport pathways.
A) Predicted interactions of four specific types combined to assemble B) (arrows in black representing our final predicted pathway interactions) a

Genome-Wide Inference of Pathway Components
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for regulatory hubs to incur more synthetic interactions than

expected.

Degree distribution captures a global description of each

network, while analysis of small recurring subgraphs has been

proposed to describe local network properties [40,41]. We

investigated the enrichment of two types of subgraphs, network

motifs and graphlets, in our interactomes. First, network motifs are

small directed subgraphs that have been found to recur in a

growing number of organisms [42–44]. In our 12 directed

interaction networks, the feed forward loop motif showed

significant enrichment (relative to a random background; see Text

S1) consistent with previous studies on the yeast transcription

factor network [41]. Feed forward loops are known to accelerate

or delay the response of a input signal [45], suggesting in this

context a much wider usage of dynamic information processing

than has been previously reported in regulatory networks[46–48].

A second approach to exploring the local structure of biological

networks is to examine graphlet degree distributions [40].

Graphlets are small non-isomorphic subgraphs, and a graphlet’s

degree for a given node is defined as the number copies of that

graphlet to which it is incident. For example, the number of

triangle motifs touching a particular node represents its 3-node

graphlet degree. Compared to network motifs, for which enrich-

ment can be difficult to detect due to the complexity of the baseline

null distribution[49], graphlet analysis may have a higher sensitivity

towards infrequent subgraphs. Thus, as a complementary analysis,

we computed the graphlet degree distributions for all two to five

node graphlets for the 13 specific leaf node interactomes in our

interaction ontology (Figure 5C). We compared the graphlet degree

distributions between these interactomes, demonstrating a clear

divergence in the local network structure between subclasses of

metabolic, regulatory and synthetic interactions. Unlike the

comparison of high-degree genes, this also captures unexpected

similarities between disparate interaction types: phosphorylation

and ubiquitination, for example, are siblings in the interaction

ontology and represent comparable mechanisms of post-transla-

tional modification. The former’s local network topology is more

similar to that of synthetic interactions, however, while ubiquitina-

tion is more strongly regulatory. This differentiating pattern

between ubiquitination and phosphorylation provides a base for

intriguing network hypotheses for further investigation. One

potential explanation could be due to the differing mechanistic

activities where ubiquitination is most often employed exclusively as

a regulatory mechanism to degrade active proteins, whereas

Figure 4. Experimental validation of predicted synthetic lethal interactions. Experimentally tested synthetic lethal hypotheses in the yeast
A) DNA topological change and B) regulation of protein biosynthesis processes. A total of 20 gene pairs from our predicted synthetic lethality
networks were experimentally tested using the SGA platform [4,13]. We confirmed 14 of these interactions (70%), 8 in DNA topological change and 6
in protein biosynthesis. Several of the remaining unconfirmed pairs (e.g. GCS1 and SLT2; see main text) show additional evidence of condition-
specific synthetic lethality.
doi:10.1371/journal.pcbi.1001009.g004

pathway connecting the transcription factor Adr1 involved in carbon metabolism process to its regulatory input Snf1. This generates two concrete
hypotheses suggesting, first, cross-talk between the calmodulin- and Snf1-dependent pathways via Cmk2 phosphorylating Glc7. Second, we also
predict coordinated regulation between the glycogen breakdown and glucose utilization pathways through a metabolic interaction between Adr1
and Gph1. C) Previously known and newly predicted interactions in yeast protein transport connecting the plasma membrane, vacuole, golgi and ER.
We propose a regulatory competition between the Arf1 and Vsp1 GTPases for Bch1 functionality that is likely regulated by GTP availability, which
itself is known to be regulated by protein sorting events in the cell. These predictions also hypothesize that YDL012c may be involved in regulating
Vps1 activity.
doi:10.1371/journal.pcbi.1001009.g003
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phosphorylation serves both regulatory and dynamic information

processing roles [50].

Discussion

The increasing abundance of genomic data has opened up

countless new possibilities for systems-level biological perspectives,

but its increasing complexity impedes the understanding of specific

cellular circuitry at a mechanistic level. Here, we provide a

method with which very large experimental data compendia can

be integrated to predict 30 specific biomolecular interaction types

at a genome-wide scale. By applying this to more than ,3,500

experimental conditions in yeast, we have evaluated these

predictions at an average AUC of 0.79, validated 70% of

experimentally tested synthetic lethal interactions, and proposed

novel transcriptional, genetic, post-translational, and metabolic

interactions in the yeast carbon metabolism and cellular transport

pathways.

As described above, the investigation of specific S. cerevisiae

biology in the processes of glucose utilization and protein

trafficking demonstrates the use of these interactomes to

reconstruct complete pathways. In many instances, experimental

biologists are faced with the task of designing experiments to target

a specific set of genes. By simultaneously hypothesizing all types of

biomolecular interactions in which a group of gene products may

be involved, this methodology can be used to select both the

proteins to be assayed and the assays that may be most

informative. Prior approaches inferring these interaction types in

isolation mask this information and may even be inconsistent; how

might a biologist interpret predictions that two proteins physically

interact, but that they are not part of the same pathway? Such

inconsistencies are avoided by simultaneous ontology-based

inference, allowing underlying experimental data to be integrated

into a consistent description of a cellular system.

To our knowledge, there has been no other method that

simultaneously enables researchers to leverage high-throughput

data in an interaction-type-specific manner within an ensemble

setting. Successful focused attempts to predict specific interaction

types have shown comparable AUCs to our results [51,52], which

could be incorporated into a framework like this as base classifiers

during future work (instead of the SVMs utilized in this study).

Recent ‘‘functional coupling’’ predictions [20] are also related, but

fall short of pathway-level interaction predictions, mainly due to a

lack of the crucial directional information needed to infer

bimolecular pathways. These frameworks typically also do not

resolve inconsistencies among predicted interaction type labels

that can hinder pathway reconstruction and experimental follow

up.

Ultimately, compendia of inferred interaction networks can be

used to explicitly construct and understand distinct cellular

pathways. By investigating and confirming different interaction

types suggested by our system, investigators can stitch together

both new pathways and new interconnections between existing

ones. This process can be applied in any organism for which

diverse genome-scale data is available - a situation that is only

becoming more common. We believe that our work can leverage

this diversity of experimental results that might otherwise be

underutilized, helping to spur new functional discoveries in

organisms beyond yeast. Finally, all of our predicted networks

are made publicly available through an interactive tool at http://

function.princeton.edu/bioweaver for investigators to explore

their own biological areas of interest.

Materials and Methods

We developed an integrated method for concurrently predicting

multiple protein interaction types. This method integrates large

and diverse collections of functional genomic data in the context of

a biomolecular interaction ontology. Each gene interaction type in

the ontology is first predicted using an SVM classifier by

integrating ,3,500 experimental conditions from expression,

colocalization, regulatory, and other yeast experimental data

(withholding data types directly related to the interaction type

being predicted; see below). These isolated interactomes are then

reconciled using a hierarchical Bayesian framework to obtain the

most probable set of consistent labels for each gene pair within the

hierarchy of our interaction ontology. Using this system, we

generated 30 S. cerevisiae interactomes, with which we validated

several mechanistic interaction predictions in carbon metabolism,

cellular transport, and 14 new synthetic lethal interactions in DNA

topological change and protein biosynthesis.

Interaction ontology construction
We constructed an interaction ontology focused on categorizing

gene pair relationships. This is similar in spirit to the Gene

Ontology (GO) [36], which curates individual proteins’ molecular

functions, biological roles, and subcellular localizations. Our

interaction ontology contains a total of 124 terms and integrates

information from existing interaction catalogs [53,54], the EBI

[55], and SGD [56]. The ontology’s three major branches are

metabolic, interaction pathway, and physical interactions. Meta-

bolic interactions describe protein pairs linked in metabolic

pathways, such as isoenzymes or enzymes that catalyze adjacent

reactions. Physical interactions include covalent or non-covalent

binding, e.g. stable complexes or transient post-translational

modifications. Pathway interactions include more conceptual

relationships between genes in a pathway, such as regulation or

synthetic interactions. We selected the 30 nodes in our interaction

ontology with more than 70 annotations (as described below) to

include in this evaluation, and the complete ontology with

descriptions of each term is provided in Text S1 and Text S3.

Gold standard construction
There exists no comprehensive curated gold standard repository

for all types of gene pair interactions. For the 30 interactomes

evaluated here, we assembled a gold standard for each type from

various sources. SGD interaction labels were used for all terms

under the physical and pathway interaction terms [56]. Additional

transcriptional regulation annotations were obtained from the high

confidence set from [57]. Co-complex annotations were obtained

from gene pairs in the GO Slim term PROTEIN_COMPLEX [58].

Pairs included in terms under metabolic interaction were obtained

Figure 5. Systems-level analysis of inferred networks. In all cases, continuously weighted networks were binarized by choosing an edge cutoff
three standard deviations above mean, retaining ,1% of all edges. A) The degree distribution for all 30 of our predicted interactomes agrees strongly
with a scale-free network topology. B) Conditional probabilities for a gene to appear in the top 5% of each pair of networks’ degree distributions.
Similarity indicates that a pair of networks share the same high-connectivity genes and thus represent functional activity carried out by similar sets of
proteins. C) Graphlet degree distributions compared using the GDD metric between the 13 leaf interactomes in our interaction ontology. Network
pairs with greater similarity demonstrate related local network topologies, suggesting that comparable functional modules might be employed in the
two interactomes (e.g. between phosphorylation and synthetic interactions or ubiquitination and post-translational regulation).
doi:10.1371/journal.pcbi.1001009.g005
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from reactions in the KEGG database [59]. For the topmost node,

functional relationships, we used positive examples from the

biological process branch of GO [60]. When possible, we further

manually curated gene pairs to more specific terms based on

literature examination. Manual curation was performed to

annotate ubiquitination interactions based on SGD curated

interaction publications and also to cross annotate experimentally

validated covalent modification branch examples to regulatory

interaction branch terms. The directionality of the gold standards

was derived directly from the inherent high throughput experi-

ments (e.g. kinases to targets). All gene pairs annotated to a term

were propagated such that they were included as positive

interactions for all ancestor terms. This resulted in a total of

1,333,014 unique positive labels across 30 terms (individual terms

are detailed in Text S1).

This process established positive interactions for each term in

our interaction ontology. For supervised machine learning (such as

our SVM-based method described below), negative examples are

also required. As protein interactions are sparse, we randomly

selected a number of negative gene pairs for each term’s gold

standard equal to the number of positive interactions [61].

Additionally, to assess the accuracy of our directed interaction

predictions, we used negative gene pairs identical to the positive

examples but with inverted directionality. Finally, for evaluating

predictions on new post-translational regulation completely

unrelated to our training gold standard, we selected 173 additional

gene pairs from 24 recent publications (see Text S1).

Evaluation was performed by randomly excluding ,%30 of the

genes for each interaction type during training. That leads to a

group of genes that are not in the training set and established a test

set of interactions containing at least one gene from this exclusive

gene set. The remaining pairs were used for SVM training and for

parameter estimation in the Bayesian network. We used area

under the receiver operator characteristic (ROC) curve (AUC) for

evaluation as detailed in Text S1.

Data sources and preprocessing
As training data for each interaction type, we used subsets of a

data compendium consisting in total of microarray, colocalization,

protein domains, transcription factor binding sites, and sequence

similarity. For each interaction type to be predicted, experimental

data closely related to the output was excluded (e.g. TF binding

sites for regulatory relationships). 78 yeast microarray datasets

were included, comprising 3,516 conditions (see Text S2). Missing

values in these datasets were imputed using KNNImpute [62] with

k = 10, and genes with more than 30% missing values were

removed.

For machine learning, one feature was constructed per

expression condition as follows. For directional gene pair

interaction types such as phosphorylation, we evaluated various

methods and found xi-xj to provide optimal performance, where xi

and xj are the expression values of gene i and j in condition x.

When predicting non-directional interaction types such as physical

interaction, we used |xi-xj|, the absolute value of the subtracted

expression values.

Colocalization data for 22 different cell compartments [63] and

automatically determined protein family information from Pfam B

[64] were both included as binary features (true if both genes in a

pairs shared localization or a protein family). TRANSFAC data

[65] was incorporated using the Euclidian distance between the

two gene’s binding site profiles across 211 transcription factors.

Sequence similarity between the two genes in each pair’s 1,000 bp

upstream and 1,000 bp downstream was scored as the sequence

alignment E-values from all-against-all BLAST outputs.

Algorithm
We developed an integrated method for predicting diverse

protein interactions, based on a multi-label hierarchical classifica-

tion formulation we have previously applied to gene function

prediction in both yeast and mouse [6,66]. First, for each

interaction type, we trained 10 separate SVM classifiers. We use

bagging (bootstrap aggregation, [67]) to combine these and

improve generalization, training each individual SVM classifier

on a bootstrapped subsample of its interaction type’s complete

gold standard. We thus begin with a total of 300 SVM classifiers

for our 30 interaction types in yeast, and each interaction type’s

group of 10 SVM outputs were averaged (bagged) to produce a

non-hierarchically-resolved predicted interactome.

Next, a Bayesian network was constructed based on the

structure of the interaction ontology. First, we modeled each

interaction type’s bagged SVM output i as a random event Yi

taking discrete values binned by five standard deviations above or

five below the training set mean. Each SVM’s predictions in

isolation were treated as a noisy observation of a latent event Xi

representing the true, binary interactions and non-interactions of

each type i. Each Yi was considered to be dependent only on its

corresponding Xi, and each Xi was dependent only on its set of

children {Xj, ..., Xk} in the interaction ontology, resulting in the

‘‘decorated tree’’ Bayesian network structure seen in Figure 1 and

in [6]. Given this structure, conditional probability table

parameters for P(Yi|Xi) were learned using maximum likelihood

from interaction type i’s training data. Finally, parameters for

P(Xi|Xj, ..., Xk) were fixed to constrain the hierarchical semantics

of the ontology. If a pair is annotated to any child in {Xj, ..., Xk}, it

must also be of interaction type i, making P(Xi = 1|Xj = 1) = ...

= P(Xi = 1|Xk = 1) = 1. The remaining parameters P(Xi = 1|Xj = 0,

..., Xk = 0) were inferred using maximum likelihood by counting

the corresponding training labels. Finally, Laplace smoothing was

used to improve parameter robustness.

System level network analysis
All 30 interactomes were converted into binary interaction

networks by setting a threshold of 5 standard deviations above the

mean edge probability, retaining ,1% of all edges. The degree of

each gene was counted in this binarized network. The overlap

between each pair of interactomes’ high-connectivity genes was

computed as the probability of a gene g being in the top 5% of

interactome N1’s degree distribution(Q i(Nj), defined as genes in the

top i percent degree distribution of interactome Nj) given that it

was in N2’s: P[g in Q 0.05(N1)|g in Q 0.05(N2)]. For each of the 30

interactomes N2, we generated a sorted gene list by edge degree;

for directed interactomes, separate lists were generated for in- and

out-degree. Next, we counted the number of shared genes in the

top 5% of edge degree in the target interactome N1. Finally,

hierarchical clustering was used to generate clusters of shared high

degree genes.

Network motif enrichment analysis was carried out using

FANMOD [68]. Searches were conducted for 3-node motifs using

a sampling method with probability parameters of 0.6, 0.5, 0.4 and

compared to 500 random networks generated using an edge

swapping process preserving each gene’s degree. Computational

complexity precluded analysis of 4-node motifs. Graphlet degree

distributions were calculated using GraphCrunch [69]. For each

interactome, 73 graphlet degree distributions were generated, each

representing a unique distribution of 2-5 node graphlets.

Comparison between graphlet distributions was performed using

the GDD agreement metric, defined as the average normalized

distance to provide robust comparisons [40,69].
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Implementation
All software was implemented using the Sleipnir library [70],

which interfaces with the SVMperf software [71] for linear kernel

SVM classifiers (the error parameter C was set to 20 for these

experiments). Bayesian network inference used the Lauritzen

algorithm [72] as implemented in the University of Pittsburgh

SMILE library [73].

Experimental validation of synthetic lethal pairs
20 gene pairs predicted to synthetically interact [56] with high

probability were selected from the DNA topological change and

regulation of protein biosynthesis pathways in yeast (as defined by

GO [36]). Synthetic Genetic Array (SGA) technology [4,13] was

applied to these pairs by combining either non-essential gene

deletion mutants or conditional alleles of essential genes in haploid

yeast double mutants. The query mutant strain for each pair of

genes (harboring SGA-specific reporters and markers) was crossed

to the complementary single mutant strain. Mating to the non-

essential gene deletion collection was followed by meiotic

recombination and selection of haploid meiotic progeny, resulting

in an output array of double mutants grown in rich medium.

Fitness was assessed by comparing this double mutant colony size

to the sizes of single mutant colonies, which were assessed for

significance as described in [4,13]. A p-value threshold of 0.05 was

used to determine the final confirmed synthetic lethal pairs (the full

table of p-values can found in Text S1).

Supporting Information

Text S1 Additional description of the results and methods from

the paper.

Found at: doi:10.1371/journal.pcbi.1001009.s001 (1.12 MB

DOC)

Text S2 The microarray dataset list used in our functional

integration.

Found at: doi:10.1371/journal.pcbi.1001009.s002 (0.00 MB

TXT)

Text S3 Interaction ontology files - includes OWL ontology

format file and visual ontology PDF file

Found at: doi:10.1371/journal.pcbi.1001009.s003 (0.03 MB ZIP)
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